539 resultados para oxygen-18


Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-resolution benthic oxygen isotope and dust flux records from Ocean Drilling Program site 659 have been analyzed to extend the astronomically calibrated isotope timescale for the Atlantic from 2.85 Ma back to 5 Ma. Spectral analysis of the delta18O record indicates that the 41-kyr period of Earth's orbital obliquity dominates the Pliocene record. This is shown to be true regardless of fundamental changes in the Earth's climate during the Pliocene. However, the cycles of Sahelian aridity fluctuations indicate a shift in spectral character near 3 Ma. From the early Pliocene to 3 Ma, the periodicities were dominantly precessional (19 and 23 kyr) and remained strong until 1.5 Ma. Subsequent to 3 Ma, the variance at the obliquity period (41 kyr) increased. The timescale tuned to precession suggests that the Pliocene was longer than previously estimated by more than 0.5 m.y. The tuned ages for the magnetic boundaries Gauss/Gilbert and Top Cochiti are about 6-8% older than the ages of the conventional timescale. A major phase of Pliocene northern hemisphere ice growth occurred between 3.15 Ma and 2.5 Ma. This was marked by a gradual increase in glacial Atlantic delta18O values of 1per mil and an increase in amplitude variations by up to 1.5 per mil, much larger than in the Pacific deepwater record (site 846). The first maxima occured in cold stages G6-96 between 2.7 Ma and 2.45 Ma. Prior to 3 Ma, the isotope record is characterized by predominantly low amplitude fluctuations (< 0.7 per mil). When obliquity forcing was at its minimum between 4.15 and 3.6 Ma and during the Kaena interval, delta18O amplitude fluctuations were minimal. From 4.9 to 4.3 Ma, the delta18O values decreased by about 0.5 per mil, reaching a long-term minimum at 4.15 Ma, suggesting higher deepwater temperatures or a deglaciation. Deepwater cooling and/or an increase in ice volume is indicated by a series of short-term delta18O fluctuations between 3.8 and 3.6 Ma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxygen isotopic and microfaunal analyses and shell size variations of Orbulina universa in two Indian Ocean cores indicate that the position of the Subtropical Convergence has fluctuated between a northern limit north of 31°S during glacial stages and its present, maximum southern limit. The northward displacement of the Subtropical Convergence to a position off Durban, South Africa, reflects the general weakness of the Agulhas Current during glacial stages and parts of interglacial stages, representing about 65 percent of the past 540,000 years.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Changes in intermediate and deep ocean circulation likely played a significant role in global carbon cycling and meridional heat/moisture transport during the middle Miocene climate transition (~14 Ma). High-resolution middle Miocene (16-13 Ma) benthic foraminifer stable isotope records from the South China Sea reveal a reorganization of regional bottom waters, which preceded the globally recognized middle Miocene ~1 per mil d18O increase (13.8 Ma) by 100,000 years. An observed reversal of the benthic foraminifera d13C gradient between ODP Sites 1146 (2092 m) and 1148 (3294 m; 13.9-13.5 Ma) is interpreted to reflect an increase in the southward flux of low d13C deep (> 2000 m) Pacific Ocean waters (Flower and Kennett, 1993, doi:10.1029/93PA02196; Shevenell and Kennett, 2004). Large-scale changes in Pacific intermediate and deep ocean circulation, coupled with enhanced global carbon cycling at the end of the Monterey Carbon Isotope excursion, likely acted as internal feedbacks to the Earth's climate system. These feedbacks reduced the sensitivity of Antarctica to lower latitude-derived heat/moisture and facilitated the transition of the Earth's climate system to a new, relatively stable glacial state.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Detailed records of the carbon and oxygen isotopic ratios of Neogloboquadrina pachyderma are compared between nine high-latitude sediment cores, from the Northern and Southern Hemispheres, covering the last 140000 yrs. The strong analogies between the delta13C records permit to define a delta13C stratigraphic scale, with three clear cut transitions simultaneous with the oxygen isotopic transitions 6/5 (125 kyrs.), 5/4 (65 kyrs.), and 2/1 (13 kyrs.). The delta13C records of N. pachyderma in the high-latitude cores, which follow the changes in delta13C of the surface water TCO2 near areas of deep water formation present trends similar to the benthic foraminifera delta13C records in cores V19-30 and M12-392, although amplitudes of the isotopic shifts are different. This implies that a large part of the observed variations represents global changes in the carbon distribution between biosphere and ocean. The 13C/12C ratios of N. pachyderma in the North Atlantic cores display larger regional variations at 18 kyrs. B.P. than at present. To explain these differences, we have plotted the 18 kyrs. B.P. delta13C values of N. pachyderma from 17 cores distributed N of 40°N. Comparison with published surface water temperature distribution at 18 kyrs. B.P. indicates that a strong divergent cyclonic cell, centered approximatively 55°N and 15°W, was active during most of the last ice-age maximum. This hydrology, analogous to the present Weddell Sea, explains the published evidences of bottom water formation, if located on the northern flank of the gyre, and the strong polar front on the southern flank, probable location of intermediate water formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The South Pacific is a sensitive location for the variability of the global oceanic thermohaline circulation given that deep waters from the Atlantic Ocean, the Southern Ocean, and the Pacific Basin are exchanged. Here we reconstruct the deep water circulation of the central South Pacific for the last two glacial cycles (from 240,000 years ago to the Holocene) based on radiogenic neodymium (Nd) and lead (Pb) isotope records complemented by benthic stable carbon data obtained from two sediment cores located on the flanks of the East Pacific Rise. The records show small but consistent glacial/interglacial changes in all three isotopic systems with interglacial average values of -5.8 and 18.757 for epsilon Nd and 206Pb/204Pb, respectively, whereas glacial averages are -5.3 and 18.744. Comparison of this variability of Circumpolar Deep Water (CDW) to previously published records along the pathway of the global thermohaline circulation is consistent with reduced admixture of North Atlantic Deep Water to CDW during cold stages. The absolute values and amplitudes of the benthic delta13C variations are essentially indistinguishable from other records of the Southern Hemisphere and confirm that the low central South Pacific sedimentation rates did not result in a significant reduction of the amplitude of any of the measured proxies. In addition, the combined detrital Nd and strontium (87Sr/86Sr) isotope signatures imply that Australian and New Zealand dust has remained the principal contributor of lithogenic material to the central South Pacific.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quantitative estimation of surface ocean productivity and bottom water oxygen concentration with benthic foraminifera was attempted using 70 samples from equatorial and North Pacific surface sediments. These samples come from a well defined depth range in the ocean, between 2200 and 3200 m, so that depth related factors do not interfere with the estimation. Samples were selected so that foraminifera were well preserved in the sediments and temperature and salinity were nearly uniform (T = 1.5° C; S = 34.6 per mil). The sample set was also assembled so as to minimize the correlation often seen between surface ocean productivity and bottom water oxygen values (r**2 = 0.23 for prediction purposes in this case). This procedure reduced the chances of spurious results due to correlations between the environmental variables. The samples encompass a range of productivities from about 25 to >300 gC m**-2 yr**-1, and a bottom water oxygen range from 1.8 to 3.5 ml/L. Benthic foraminiferal assemblages were quantified using the >62 µm fraction of the sediments and 46 taxon categories. MANOVA multivariate regression was used to project the faunal matrix onto the two environmental dimensions using published values for productivity and bottom water oxygen to calibrate this operation. The success of this regression was measured with the multivariate r? which was 0.98 for the productivity dimension and 0.96 for the oxygen dimension. These high coefficients indicate that both environmental variables are strongly imbedded in the faunal data matrix. Analysis of the beta regression coefficients shows that the environmental signals are carried by groups of taxa which are consistent with previous work characterizing benthic foraminiferal responses to productivity and bottom water oxygen. The results of this study suggest that benthic foraminiferal assemblages can be used for quantitative reconstruction of surface ocean productivity and bottom water oxygen concentrations if suitable surface sediment calibration data sets are developed and appropriate means for detecting no-analog samples are found.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxygen isotope analyses of Tertiary and Cretaceous planktic foraminifera indicate that species have been stratified with respect to depth in the water column at least since Albian time. There is a relationship between morphology and depth habitat. Species with globigerine morphology have consistently occupied shallower depths than have species with globorotalid morphology. Biserially arranged species occupied both shallow and deep levels in the water column. On the average, it appears that ancient species with shallow habitats have been more susceptible to dissolution and have been preserved less well than species dwelling in deeper habitats. This relationship is similar to that observed for Recent planktic foraminifera. Comparison of carbon isotope ratios of adult and juvenile forms indicates that either the source of the carbon found in the shell or the carbon isotopic fractionations which occur during calcite secretion change during the development of individual foraminifera. The carbon isotopic ratios do not provide a reliable means for reconstructing the depth habitats of ancient species. Temperature-depth profiles for tropical Tertiary oceans have been reconstructed from the isotopic temperatures of planktic and benthic foraminifera. The vertical thermal structure of Oligocene oceans resembled that of modern oceans most closely. Those of Paleocene and Maastrichtian times differed most from that of modern oceans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present records of biogenic opal percentage and burial rate in 12 piston cores from the Atlantic and Indian sectors of the Southern Ocean. These records provide a detailed, quantitative description of changing patterns of opal deposition over the last 450 kyr. The striking regional coherence of these records suggests that dissolution in the deep sea and sediment pore waters does not obscure the surface productivity signal, and therefore these opal time series can be used in combination with other surface water tracers to make inferences about the chemistry and circulation of the Southern Ocean under different global climate conditions. Three broad depositional patterns can be distinguished. Northernmost records (39°-42°S latitude) are characterized by enhanced opal burial during glacial periods and strong 41 kyr periodicity. Records from cores just north of the present Antarctic Polar Front (46°-49°S) show even larger increases in opal burial rate during glacial intervals, but have variance concentrated in the 100 and 23 kyr bands. Southernmost records (51°-55°S) are completely out of phase with those to the north, with greatly reduced opal burial rates during glacial periods. Taken as a whole, the opal records show no evidence for the increased total Antarctic productivity predicted by recent geochemical models of atmospheric CO2 variability. The areal expansion of Southern Ocean sea ice over the present zone of high siliceous productivity provides one plausible explanation for the glacial-interglacial opal patterns. The excess silica not taken up in this zone during glacial periods would contribute to greater nutrient availability and thus higher productivity in the subantarctic region. However, local circulation changes may act to modify this basic signal, possibly accounting for the observed differences in the opal variance spectra.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fluctuations in benthic foraminiferal faunas over the last 130,000 yr in four piston cores from the Norwegian Sea are correlated with the standard worldwide oxygen-isotope stratigraphy. One species, Cibicides wuellerstorfi, dominates in the Holocene section of each core, but alternates downcore with Oridorsalis tener, a species dominant today only in the deepest part of the basin. O. tener is the most abundant species throughout the entire basin during periods of particularly cold climate when the Norwegian Sea presumably was ice covered year round and surface productivity lowered. Portions of isotope Stages 6, 3, and 2 are barren of benthic foraminifera; this is probably due to lowered benthic productivity, perhaps combined with dilution by ice-rafted sediment; there is no evidence that the Norwegian Sea became azoic. The Holocene and Substage 5e (the last interglacial) are similar faunally. This similarity, combined with other evidence, supports the presumption that the Norwegian Sea was a source of dense overflows into the North Atlantic during Substage 5e as it is today. Oxygen-isotope analyses of benthic foraminifera indicate that Norwegian Sea bottom waters warmer than they are today from Substage 5d to Stage 2, with the possible exception of Substage 5a. These data show that the glacial Norwegian Sea was not a sink for dense surface water, as it is now, and thus it was not a source of deep-water overflows. The benthic foraminiferal populations of the deep Norwegian Sea seem at least as responsive to near-surface conditions, such as sea-ice cover, as they are to fluctuations in the hydrography of the deep water. Benthic foraminiferal evidence from the Norwegian Sea is insufficient in itself to establish whether or not the basin was a source of overflows into the North Atlantic at any time between the Substage 5e/5d boundary at 115,000 yr B.P. and the Holocene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present an almost 3 year long time series of shell fluxes and oxygen isotopes of left-coiling Neogloboquadrina pachyderma and Turborotalita quinqueloba from sediment traps moored in the deep central Irminger Sea. We determined their response to the seasonal change from a deeply mixed water column with occasional deep convection in winter to a thermally stratified water column with a surface mixed layer (SML) of around 50 m in summer. Both species display very low fluxes during winter with a remnant summer population holding out until replaced by a vital population that seeds the subsequent blooms. This annual population overturning is marked by a 0.7 per mill increase in d18O in both species. The shell flux of N. pachyderma peaks during the spring bloom and in late summer, when stratification is close to its minimum and maximum, respectively. Both export periods contribute about equally and account for >95% of the total annual flux. Shell fluxes of T. quinqueloba show only a single broad pulse in summer, thus following the seasonal stratification cycle. The d18O of N. pachyderma reflects temperatures just below the base of the seasonal SML without offset from isotopic equilibrium. The d18O pattern of T. quinqueloba shows a nearly identical amplitude and correlates highly with the d18O of N. pachyderma. Therefore T. quinqueloba also reflects temperature near the base of the SML but with a positive offset from isotopic equilibrium. These offsets contrast with observations elsewhere and suggest a variable offset from equilibrium calcification for both species. In the Irminger Sea the species consistently show a contrast in their flux timings. Their flux-weighted delta d18O will thus dominantly be determined by seasonal temperature differences at the base of the SML rather than by differences in their depth habitat. Consequently, their sedimentary delta d18O may be used to infer the seasonal contrast in temperature at the base of the SML.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a sediment core AMK4-316 (460 cm long) on the basis of radiocarbon, oxygen isotope, and lithological data climatostratigraphy is established for time interval about 145 ka. The method of factor analysis and spline interpolation applied to data on distribution of planktic foraminifera species has allowed to reconstruct average annual and seasonal temperatures and salinity at the surface and at depth 100 m. The optimum of the Last Interglaciation (5e) is characterized by maximal temperatures, low amplitudes of seasonal fluctuations, and by increased thickness of the upper homogeneous layer. The glacial hydrological mode has arisen here 115 ka ago. Coolings outstripped appropriate events of the global continental glaciation. Minimal average annual temperatures (4-4.5°C) are reconstructed for 47-45, 42, 36, 29-30, and 10 ka. For 50-30 ka interval numerous strong temperature fluctuations that reflect migrations of the polar front are established. Maximal differences of salinity at the surface and depth 100 m showing influence of melting waters were in the beginning of deglaciations (135 and 20 ka) and repeatedly arose in 50-30 ka interval. The Last Glacial Maximum (18 ka) is characterized by the lowest salinity but not by a peak of low temperatures at the surface. Surface temperature was lowered up to 10 ka. Average annual surface temperature of the Holocene optimum was 2°C above the modern one and 2°C below temperature in the Interglaciation optimum (5e), thickness of the upper homogeneous layer exceeded 100 m.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A combination of stable isotope records and Mg/Ca temperature estimates of four different planktonic foraminiferal species from Ocean Drilling Program Site 1241 allows differentiation between temperature and salinity changes in the tropical east Pacific (TEP) upper water column during the Pliocene (~5.7-2.1 Ma). The deviation of d18O records and Mg/Ca temperature estimates from thermocline-dwelling planktonic foraminifers suggests that local changes in salinity exerted a much stronger control on Pliocene TEP upper ocean water mass signatures than previously assumed. The most pronounced Pliocene change in TEP upper ocean stratification was the shoaling of the thermocline from ~4.8 to 4.0 Ma that was possibly triggered by changes in the configuration of low-latitude ocean gateways. During this time interval, mixed-layer temperatures and salinities remained relatively constant in contrast to a pronounced temperature (~6°C) and salinity decrease at the bottom of the photic zone. This change led to a new state in the thermal structure of the TEP, as the thermocline remained relatively shallow until ~2.1 Ma.