558 resultados para organic matter input
Resumo:
Organic matter contents of black shales from the Cretaceous Hatteras and Blake-Bahama formations have been compared to those from surrounding organic-poor strata using C/N ratios, d13C values, and distributions of extractable and nonsolvent-extractable, long-chain hydrocarbons, acids, and alcohols. The proportion of marine and land-derived organic matter varies considerably among all samples, although terrigenous components generally dominate. Most black shales are hydrocarbon-poor relative to their organic-carbon concentrations. Deposition of the black shales in Hole 603B evidently occurred through turbiditic relocation from shallower landward sites and rapid reburial at this outer continental rise location under generally oxygenated bottom-water conditions.
Resumo:
Organic matter in sediments from Sites 515, 516, and 517 reflects a history of low marine productivity and of oxygenated bottom waters in the western South Atlantic since the Pliocene. Organic carbon contents are low, averaging 0.26% of sediment weight. Distributions of n-alkanes, n-alkanols, and n-alkanoic acids show evidence of microbial reworking, and n-alkanes contain important terrigenous contributions, presumably of eolian origin.
Resumo:
High sedimentation rates in fjords provide excellent possibilities for high resolution sedimentary and geochemical records over the Holocene. As a baseline for an improved interpretation of geochemical data from fjord sediment cores, this study aims to investigate the inorganic/organic geochemistry of surface sediments and to identify geochemical proxies for terrestrial input and river discharge in the Trondheimsfjord, central Norway. Sixty evenly distributed surface sediment samples were analysed for their elemental composition, total organic carbon (Corg), nitrogen (Norg) and organic carbon stable isotopes (d13Corg), bulk mineral composition and grain size distribution. Our results indicate carbonate marine productivity to be the main CaCO3 source. Also, a strong decreasing gradient of marine-derived organic matter from the entrance towards the fjord inner part is consistent with modern primary production data. We show that the origin of the organic matter as well as the distribution of CaCO3 in Trondheimsfjord sediments can be used as a proxy for the variable inflow of Atlantic water and changes in river runoff. Furthermore, the comparison of grain size independent Al-based trace element ratios with geochemical analysis from terrigenous sediments and bedrocks provides evidence that the distribution of K/Al, Ni/Al and K/Ni in the fjord sediments reflect regional sources of K and Ni in the northern and southern drainage basin of the Trondheimsfjord. Applying these findings to temporally well-constrained sediment records will provide important insights into both the palaeoenvironmental changes of the hinterland and the palaeoceanographic modifications in the Norwegian Sea as response to rapid climate changes and associated feedback mechanisms.
Resumo:
A high-resolution sedimentological and geochemical study was performed on a 20 m long core from the alpine Lake Anterne (2063 m a.s.l., NW French Alps) spanning the last 10 ka. Sedimentation is mainly of minerogenic origin. The organic matter quantity (TOC%) as well as its quality (hydrogen (HI) and oxygen (OI) indices) both indicate the progressive onset and subsequent stabilization of vegetation cover in the catchment from 9950 to 5550 cal. BP. During this phase, the pedogenic process of carbonate dissolution is marked by a decrease in the calcium content in the sediment record. Between 7850 and 5550 cal. BP, very low manganese concentrations suggest anoxic conditions in the bottom-water of Lake Anterne. These are caused by a relatively high organic matter (terrestrial and lacustrine) content, a low flood frequency and longer summer stratification triggered by warmer conditions. From 5550 cal. BP, a decrease in TOC, stabilization of HI and higher sedimentation rates together reflect increased erosion rates of leptosols and developed soils, probably due to a colder and wetter climate. Then, three periods of important soil destabilization are marked by an increased frequency and thickness of flood deposits during the Bronze Age and by increases in topsoil erosion relative to leptosols (HI increases) during the late Iron Age/Roman period and the Medieval periods. These periods are also characterized by higher sedimentation rates. According to palynological data, human impact (deforestation and/or pasturing activity) probably triggered these periods of increased soil erosion.
Resumo:
Distributions of free and bound n-alkanes, n-alkanoic acids, and n-alkanols were determined in order to compare the character of organic matter contained in organic-carbon-rich sediments from two sites sampled by the hydraulic piston corer. Two diatomaceous debris-flow samples of Pleistocene age were obtained from Hole 530B in the Angola Basin. A sample of bioturbated Pleistocene diatomaceous clay and another of bioturbated late Miocene nannofossil clay were collected from Hole 532 on the Walvis Ridge. Geolipid distributions of all samples contain large terrigenous contributions and lesser amounts of marine components. Similarities in organic matter contents of Hole 530B and Hole 532 sediments suggest that a common depositional setting, probably on the Walvis Ridge, was the original source of these sediments through Quaternary, and possibly late Neogene, times and that downslope relocation of these biogenic deposits has frequently occurred.
Resumo:
Data are presented on concentration of dissolved organic carbon and particulate organic nitrogen in sea water at four stations, and also of dissolved and particulate amino acids at a deep-sea station above the Japan Trench. Concentration of Corg ranged from 0.79 to 2.00 mg/l, reaching maximum in the upper productive layers, while that of particulate Norg varied from 0.0018 to 0.037 mg/l, the maximum being in the upper layer (0-100 m). Water and particulate matter contained 18 amino acids in concentrations varying from 0.150 to 0.177 mg/l in the former and from 0.010 to 0.048 mg/l in the latter. Amino acid composition is variable. Vertical distribution of dissolved Corg and particulate Norg, as well as of dissolved and particulate amino acids is greatly dependent on water dynamics.
Resumo:
Organic geochemical data of Lower Cretaceous shallow water sediments from two sites (865 and 866) drilled during ODP leg 143 are presented. The organic matter is mainly terrestrial at the bottom of the sedimentary column at site 865, whereas algal and/or bacterial organic matter is dominant at site 866. This is the first evidence of shallow water deposition of organic matter during the Early Cretaceous in the Northwestern Pacific. The lower Aptian organic carbon-rich layers from the shallow water sediments of site 866 are geochemically similar to coeval mid-water sediments of site 463.
Resumo:
Seventeen eastern Mediterranean Pliocene sapropels from ODP Sites 964, 966, 967 and 969, some of which are coeval, have been analysed for their geochemistry. The sapropels are characterized by very high organic carbon contents (up to 30%) which are reported to be the result of both increased productivity and improved preservation. Although the organic matter in the sapropels is mainly of marine origin, the d13Corg values and C/N ratios appear "terrestrial". This is the result of anaerobic organic matter degradation which preferentially removed nitrogen- and 13C-rich organic components. A comparison with Ti/Al profiles, which mimic the precession index, and a calculation of organic carbon accumulation rates indicate that sedimentation rates were at most 30% lower or at most 50% higher during sapropel formation. Thus, sapropel formation lasted from between 2000 and 10,000 years at Site 964 to between 4500 and 12,000 years at Site 967. A synthesis of new data and a comparison with existing models indicates that productivity, which increased due to extra nutrients supplied as a result of winter mixing and as a result of enhanced input by the Nile, was the driving mechanism behind sapropel formation. The resulting sapropel formation was simultaneous at different depths, but lasted longer in the part of the basin closest to the Nile.
Resumo:
Temperate, transitional and subtropical waters of the remote Azores Front region east of Azores (24-40°N, 22-32°W) were sampled during three cruises conducted under increasing stratification conditions (April 1999, May 1997 and August 1998). Despite the temporal increase of surface temperature (by 5 °C) and stratification (by 2.1 1/min**2), as well as the thermocline shoaling (by ~15 m), dissolved organic carbon (DOC) and nitrogen (DON) in the surface layer were not significantly different for the early spring, late spring and summer periods, with average concentrations of 69±2 µM-C and 5.2±0.4 µM-N, respectively. The surface excess of semi-labile DOC, compared with the baseline DOC concentration in the deep ocean (47±2 µM-C), represents 33% of the bulk DOC concentration and as much as 85% of the TOC (=POC+DOC) excess. When compared with the winter baseline (56±2 µM-C), the seasonal surface DOC excess is 20% of the bulk DOC concentration and 87% of the seasonal TOC excess. These results confirm the major role played by DOC in the carbon cycle of surface waters of the Azores Front region. The total amount of bioreactive DOC transported from the temperate to the subtropical North Atlantic by the Ekman flux between March and December represents only ~15% of the average annual primary production, and ~15% and ~30% of the measured sinking POC flux+vertical DOC eddy diffusion during early spring and summer, respectively. Vertical eddy diffusion is 35% and 2% of the spring and summer sinking POC flux, respectively. On the other hand, DOC only contributes 13% to the local oxidation of organic matter in subsurface waters (between the pycnocline and 500 m) of the study region.
Resumo:
AMS-14C dated sediment cores from the Ob and Yenisei estuaries and the adjacent inner Kara Sea were investigated to determine the siliclastic and organic carbon fluxes and their relationship to paleoenvironmental changes. The variability of sediment fluxes during Holocene times is related to the post-glacial sea-level rise and changes in river discharge and coastal erosion input. Whereas during the late/middle Holocene most of the terrigenous sediments were deposited in the estuaries and the areas directly off the estuaries, huge amounts of sediments accumulated on the Kara Sea shelf farther north during the early Holocene before about 9 Cal. kyrs. BP. The maximum accumulation at that time is related to the lowered sea level, increased coastal erosion, and increased river discharge due to the final stage of mountain deglaciation of the Putoran Massif. Increased supply of Yenisei-derived material indicated by peak magnetic susceptibility values probably occurred in climate-related pulses culminating near 11, 10, and 9 Cal. kyrs. BP. As sea level rose, the main Holocene depocenter migrated southward. Based on hydrogen index values and n-alkanes, the organic matter is predominantly of terrigenous origin. Maximum accumulation rates of 1.5 to more than 6 g/cm2/y occurred in the early Holocene sediments, suggesting more humid climatic conditions with an increased vegetation cover in the source area at that time. In general, high organic carbon accumulation rates characterize the estuaries and the inner Kara Sea as important sink for terrigenous organic carbon. A high-resolution record of Holocene variability of magnetic susceptibility (MS) in an AMS14C-dated sediment core from the northern Yenisei estuary may indicate natural variability of Arctic climate change and river discharge on a centennial to millenial time scale. Short-term maxima in MS probably related to warmer climate, enhanced precipitation, intensified weathering/erosion and increased river discharge, display a frequency of about 300 to 700 years.