665 resultados para ROV
Resumo:
The ice cover of the Arctic Ocean has been changing dramatically in the last decades and the consequences for the sea-ice associated ecosystem remain difficult to assess. Algal aggregates underneath sea ice have been described sporadically but the frequency and distribution of their occurrence is not well quantified. We used upward looking images obtained by a remotely operated vehicle (ROV) to derive estimates of ice algal aggregate biomass and to investigate their spatial distribution. During the IceArc expedition (ARK-XXVII/3) of RV Polarstern in late summer 2012, different types of algal aggregates were observed floating underneath various ice types in the Central Arctic basins. Our results show that the floe scale distribution of algal aggregates in late summer is very patchy and determined by the topography of the ice underside, with aggregates collecting in dome shaped structures and at the edges of pressure ridges. The buoyancy of the aggregates was also evident from analysis of the aggregate size distribution. Different approaches used to estimate aggregate biomass yield a wide range of results. This highlights that special care must be taken when upscaling observations and comparing results from surveys conducted using different methods or on different spatial scales.
Resumo:
In order to reveal the structure of the sparsely known deeper sublittoral hard bottom communities of glacial Kongsfjorden, the macroepibenthos from six depth zones (30-200 m) was analysed. A total of 180 still images derived from 6-h video recorded at the Kongsfjordneset remotely operated vehicle station were assessed quantitatively. Overall 27 mainly suspension-feeding species/taxa were observed. Of these, two-thirds have an arcto-boreal distribution, while the remainder are cosmopolitan. The overall mean epibenthos abundance was 33 ind./m**2 with maximum values at 150 m depth (97.9 ind./m**2). The majority of the taxa inhabited the entire depth range. Encrusting red algae, an unidentified sponge and the sea anemone Urticina eques, characterized the assemblage of the shallow zone. The sea anemones Hormathia spp. were important below 30 m, the Serpulid polychaete Protula tubularia was characteristic for the community below 50 m and the demosponge Haliclona sp. was a key taxon between 100 and 200 m depth. Cluster analysis and non-metrical multidimensional scaling based on abundance data showed differences between the assemblages along the bathymetric gradient, but only in the shallower depths in relation to the substratum surface incline. As surface and tidal current impacts attenuate with increasing depth, there is a gradual trend from robust key species towards more fragile ones (i.e. P. tubularia), in line with the 'Physical control hypothesis'.
Resumo:
The study compiles the controlling factors for organic matter sedimentation patterns from a suite of organogeochemical parameters in surface sediments off Spitsbergen and direct seabed observations using a Remotely Operated Vehicle (ROV). In addition we assess its storage rates as well as the potential of carbon sinks on the northwestern margin of the Barents Sea with short sediment cores from a selected fjord environment (Storfjord). While sedimentation in the fjords is mainly controlled by river/meltwater discharge and coastal erosion by sea ice/glaciers resulting in high supply of terrigenous organic matter, Atlantic water inflow, and thus enhanced marine organic matter supply, characterizes the environment on the outer shelf and slope. Local deviations from this pattern, particularly on the shelf, are due to erosion and out washing of fine-grained material by bottom currents. Spots dominated by marine productivity close to the island have been found at the outer Isfjord and west off Prins Karls Forland as well as off the Kongsfjord/Krossfjord area and probably reflect local upwelling of nutrient-rich Atlantic water-derived water masses. Accumulation rates of marine organic carbon as well as reconstructed primary productivities decreased since the middle of the last century. Negative correlation of the Isfjord temperature record with reconstructed productivities in the Storfjord could be explained by a reduced annual duration of the marginal ice zone in the area due to global warming. Extremely high accumulation rates of marine organic carbon between 5.4 and 17.2 g/m**2/yr mark the Storfjord area, and probably high-latitude fjord environments in general, as a sink for carbon dioxide.
Resumo:
The lipid and organic nitrogen isotopic (delta15N) compositions of two common deep-water corals (Lophelia pertusa and Madrepora oculata) collected from selected locations of the NE Atlantic are compared to the composition of suspended particulate organic matter, in order to determine their principle food source. Initial results suggest that they may feed primarily on zooplankton. This is based on the increased abundances of mono-unsaturated fatty acids and alcohols and the different ratios of the polyunsaturated fatty acids, 22:6/20:5 of the corals when compared to those of the suspended particulate organic matter. There is enrichment in L. pertusa of mono-unsaturated fatty acids and of delta15N relative to M. oculata. It is unclear whether this reflects different feeding strategies or assimilation/storage efficiencies of zooplankton tissue or different metabolism in the two coral species.
Resumo:
Two active chemoherm build-ups growing freely up into the oceanic water column, the Pinnacle and the South East-Knoll Chemoherms, have been discovered at Hydrate Ridge on the Cascadia continental margin. These microbially-mediated carbonate formations rise above the seafloor by several tens of meters and display a pinnacle-shaped morphology with steep flanks. The recovered rocks are pure carbonates dominated by aragonite. Based on fabric and mineralogic composition different varieties of authigenic aragonite can be distinguished. Detailed visual and petrographic investigations unambiguously reveal the involvement of microbes during the formation of the carbonates. The fabric of the cryptocrystalline and fibrous aragonite can be described as thrombolitic. Fossilized microbial filaments in the microcrystalline aragonite indicate the intimate relationship between microbes and carbonates. The strongly 13C-depleted carbon isotope values of the samples (as low as -48.1 per mill PDB) are characteristic of methane as the major carbon source for the carbonate formation. The methane-rich fluids from which the carbonates are precipitated originate most probably from a gas reservoir below the bottom-simulating reflector (BSR) and rise through fault systems. The d18O values of the aragonitic chemoherm carbonates are substantially higher (as high as 5.0 per mill PDB) than the expected equilibrium value for an aragonite forming from ambient seawater (3.5 per mill PDB). As a first approximation this indicates formation from glacial ocean water but other factors are considered as well. A conceptual model is presented for the precipitation of these chemoherm carbonates based on in situ observations and the detailed petrographic investigation of the carbonates. This model explains the function of the consortium of archaea and sulfate-reducing bacteria that grows on the carbonates performing anaerobic oxidation of methane (AOM) and enabling the precipitation of the chemoherms above the seafloor surrounded by oxic seawater. Beggiatoa mats growing on the surface of the chemoherms oxidize the sulfide provided by sulfate-dependent anaerobic oxidation of methane within an oxic environment. The contact between Beggiatoa and the underlying microbial consortium represents the interface between the overlying oxic water column and an anoxic micro-environment where carbonate formation takes place.
Resumo:
Uranium (U) concentrations and activity ratios (d234U) of authigenic carbonates are sensitive recorders of different fluid compositions at submarine seeps of hydrocarbon-rich fluids ("cold seeps") at Hydrate Ridge, off the coast of Oregon, USA. The low U concentrations (mean: 1.3 ± 0.4 µg/g) and high 234U values (165-317 per mil) of gas hydrate carbonates reflect the influence of sedimentary pore water indicating that these carbonates were formed under reducing conditions below or at the seafloor. Their 230Th/234U ages span a time interval from 0.8 to 6.4 ka and cluster around 1.2 and 4.7 ka. In contrast, chemoherm carbonates precipitate from marine bottom water marked by relatively high U concentrations (mean: 5.2 ± 0.8 µg/g) and a mean d234U ratio of 166 ± 3 per mil. Their U isotopes reflect the d234U ratios of the bottom water being enriched in 234U relative to normal seawater. Simple mass balance calculations based on U concentrations and their corresponding d234U ratios reveal a contribution of about 11% of sedimentary pore water to the bottom water. From the U pore water flux and the reconstructed U pore water concentration a mean flow rate of about 147 ± 68 cm/a can be estimated. 230Th/234U ages of chemoherm carbonates range from 7.3 to 267.6 ka. 230Th/234U ages of two chemoherms (Alvin and SE-Knoll chemoherm) correspond to time intervals of low sealevel stands in marine isotope stages (MIS) 2, 4, 5, 6, 7 and 8. This observation indicates that fluid flow at cold seep sites sensitively reflects pressure changes of the hydraulic head in the sediments. The d18OPDB ratios of the chemoherm carbonates support the hypothesis of precipitation during glacial times. Deviations of the chemoherm d18O values from the marine d18O record can be interpreted as to reflect temporally and spatially varying bottom water and/or vent fluid temperatures during carbonate precipitation between 2.6 and 8.6°C.
Resumo:
The first record of Antipathella subpinnata ( Ellis and Solander, 1786) for the Azores archipelago is presented based on bottom longline by-catch analysis and ROV seafloor surveys, extending the species western-most boundary of distribution in the NE Atlantic. The species was determined using classic taxonomy and molecular analysis targeting nuclear DNA. Although maximum spine height on Azorean colonies branchlets is slightly smaller than that reported from Mediterranean colonies (0.12 vs 0.16 mm), the analysis of partial 18S rDNA, complete ITS1, 5.8S, ITS2 and partial 28S rDNA suggests that the Azorean and Mediterranean specimens belong to the same species. Video surveys of an A. subpinnata garden detected near Pico Island are used to provide the first in situ description of the species habitat in the region and the first detailed description of a black coral garden in the NE Atlantic. With A. subpinnata being the only coral found between 150 and 196 m depths, this is the deepest black coral garden recorded in the NE Atlantic and the first one to be monospecific. The species exhibited a maximum density of 2.64 colonies/m**2 and occurred across a surface area estimated at 67,333 m**2, yielding a local population estimate of 50,500 colonies.
Resumo:
Near-bottom zooplankton communities have rarely been studied despite numerous reports of high zooplankton concentrations, probably due to methodological constraints. In Kongsfjorden, Svalbard, the near-bottom layer was studied for the first time by combining daytime deployments of a remotely operated vehicle (ROV), the optical zooplankton sensor moored on-sight key species investigation (MOKI), and Tucker trawl sampling. ROV data from the fjord entrance and the inner fjord showed high near-bottom abundances of euphausiids with a mean concentration of 17.3 ± 3.5 n/100 m**3. With the MOKI system, we observed varying numbers of euphausiids, amphipods, chaetognaths, and copepods on the seafloor at six stations. Light-induced zooplankton swarms reached densities in the order of 90,000 (euphausiids), 120,000 (amphipods), and 470,000 ind/m**3 (chaetognaths), whereas older copepodids of Calanus hyperboreus and C. glacialis did not respond to light. They were abundant at the seafloor and 5 m above and showed maximum abundance of 65,000 ind/m**3. Tucker trawl data provided an overview of the seasonal vertical distribution of euphausiids. The most abundant species Thysanoessa inermis reached near-bottom concentrations of 270 ind/m**3. Regional distribution was neither related to depth nor to location in the fjord. The taxa observed were all part of the pelagic community. Our observations suggest the presence of near-bottom macrozooplankton also in other regions and challenge the current view of bentho-pelagic coupling. Neglecting this community may cause severe underestimates of the stock of elagic zooplankton, especially predatory species, which link secondary production with higher trophic levels.