978 resultados para Philippine Sea slab
Resumo:
Data on analyses of chemical composition of DSDP samples of bottom sediments and rocks carried out in P.P. Shirshov Institute of Oceanology are reported. Basal sediments and sedimentary rocks prevail in the sample set.
Resumo:
The basement cored at Site 1201 (west Philippine Basin) during Ocean Drilling Program Leg 195 consists of a 91-m-thick sequence of basalts, mostly pillow lavas and perhaps one sheet lava flow, with a few intercalations of hyaloclastite and interpillow sedimentary material. Hydrothermal alteration pervasively affected the basalt sequence, giving rise to a variety of secondary minerals such as K-Fe-Mg-clay minerals, oxyhydroxides and clay minerals mixtures, natrolite group zeolites, analcite, alkali feldspar, and carbonate. The primary minerals of pillow and sheet basalts that survived the intense hydrothermal alteration were investigated by electron microprobe with the aim of characterizing their chemical composition and variability. The primary minerals are mostly plagioclase, ranging in composition from bytownite through labradorite to andesine, chromian-magnesian-diopside, and spinels, both Ti magnetite (partially maghemitized) and chromian spinel. Overall, the chemical features of the primary minerals of Site 1201 basalts correspond to the primitive character of the bulk rocks, suggesting that the parent magma of these basalts was a mafic tholeiitic magma that most likely only suffered limited fractional crystallization and crystallized at high temperatures (slightly below 1200°C) and under increasing fO2 conditions. The major element composition of clinopyroxene suggests a backarc affinity of the mantle source of Site 1201 basement.
Resumo:
Pore fluid chlorinity lower than seawater is often observed in accretionary wedges and one of the possible causes of pore water freshening is the smectite to illite reaction. This reaction occurs during diagenesis in the 80-150°C temperature range. Low chlorinity anomalies observed at the toe of accretionary wedges have thus been interpreted as evidence for lateral fluid migration from inner parts of the wedge and the seismogenic zone. However, temperature conditions in Nankai Trough are locally high enough for the smectite to illite transition to occur in situ. Cation exchange capacity is here used as a proxy for smectite content in the sediment and the amount of interlayer water released during the smectite to illite reaction represents in average 12 water molecules per cation charge. Water and chloride budget calculations show that there is enough smectite to explain the chlorinity anomalies by in situ reactions. The shape of the pore fluid chlorinity profiles can be explained if compaction is also taken into account in the model. Lateral flow is not needed. This argument, based solely on chloride concentration, does not imply that lateral flow is absent. However, previous estimations of lateral fluid fluxes, and of the duration of transient flow events along the de.collement, should be reconsidered.
(Table 5) U series data and age determination for selected volcanics from the Bicol arc, Philippines