998 resultados para ODP Leg 184


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A multiproxy approach including the use of stable isotopes, magnetic characterization analyses, and organic geochemistry has been adopted to consider factors such as productivity and terrigenous input over the past 1.5 m.y. at two areas off the western coast of Africa. These factors can, in turn, be used to consider variability in ocean circulation and upwelling in addition to changes in climate on the African continent. In particular, studies focused on the influence of glacial-interglacial cycles and evidence for the mid-Pleistocene revolution (MPR), a complex change in climate that occurred at ~1 Ma. A comparison of the records from the two areas drilled during Ocean Drilling Program Leg 175, the Congo Basin, at a latitude of 5°S (Holes 1076A and 1077A), and the Walvis Ridge, at 17°S (Hole 1081A), demonstrates that these sites are affected by different localized factors. The sites in the Congo Basin are strongly influenced by freshwater and sediment from the Congo River, whereas the site at the Walvis Ridge is located in the center of oceanic upwelling and contains a more marine signal. Evidence also suggests that the two sites responded differently to both long- and short-term climatic variations. In particular, the response at the Walvis Ridge to the MPR occurred over an extended period, from 1.1 to 0.8 Ma, and was associated with a change in the dominant source of terrigenous input to the site in conjunction with a change in the productivity signal. In the Congo Basin, the response to the MPR was more rapid, occurring between 0.9 and 0.8 Ma. During this period, the influence of the Congo River became significant. However, productivity records only began to respond toward the end of this interval, at 0.8 Ma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Scanning electron microscope (SEM)-based analyses of the laminated diatom oozes encountered during Leg 138 reveal three major laminae types. The first lamina type is composed of multiple layers of ~20-?m-thick diatom mats, which form laminae dominated by assemblages of the pennate diatom, Thalassiothrix longissima. More than one variety/subspecies of T. longissima occurs within these laminae (referred to as the T. longissima Group). The second lamina type is composed of a mixed-assemblage of several species of diatoms (centric and pennate varieties), calcareous nannofossils, and subordinate quantities of radiolarians, silicoflagellates and foraminifers. The third lamina type is dominated by an assemblage of nannofossils and minor amounts of those fossil components mentioned above. This last form of lamination is compositionally similar to the background sediment type, foraminifernannofossil ooze (F-NO). Two lamina associations occur within the laminated intervals; the first comprises alternations of T. longissima Group and mixed-assemblage laminae (average thickness is ~6 mm) and the second is composed of T. longissima and nannofossil-rich laminae (average thickness is ~3.5 mm). The arrangement of laminae probably originates from the deposition of multiple layers of 20-?m-thick mats from one mat-flux episode. The much thinner nannofossil-rich laminae are interpreted to represent periods of more ônormalö deposition between mat-flux episodes. The occurrence of several varieties/subspecies of T. longissima within individual mat layers is consistent with observations of Rhizosolenia diatom mats in the modern world ocean.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Samples from 15 holes at nine sites in the Izu-Bonin-Mariana region were examined for calcareous nannofossils, foraminifers, diatoms, and radiolarians. The ages of the containing sediments range from middle Eocene to Holocene. Biostratigraphic indicators date the sediments flanking Conical Seamount in the Mariana forearc as Pleistocene, whereas sediments flanking a seamount at Site 784 in the Izu-Bonin forearc were dated as middle Miocene. Sediments in the Izu-Bonin forearc are as old as the middle Eocene. Useful magnetostratigraphic results range from Holocene to mid-Miocene. Nannofossils provided the most useful biostratigraphic framework, but were supplemented with satisfactory agreement by data from foraminifers, radiolarians, and diatoms. Evidence from the biostratigraphic framework shows the likely presence of a sedimentary hiatus in the early Miocene. The presence of a single short hiatus in the early Oligocene and two in the late Miocene and early Pliocene is suggested, but supporting evidence other than nannofossil data is sparse. Evidence from approximate age-depth plots shows that sediment accumulation varies from hole to hole. The fastest rates of sediment accumulation were found to be in the late Miocene to Holocene whereas the slowest rates are present in the middle Eocene to Oligocene. The increased sedimentation rates in the late Miocene to Holocene resulted from an increase in volcanogenic sediment content from an uncertain source.