990 resultados para ODP


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large serpentinite seamounts are common in the forearc regions between the trench axis and the active volcanic fronts of the Mariana and Izu-Bonin intraoceanic arcs. The seamounts apparently form both as mud volcanoes, composed of unconsolidated serpentine mud flows that have entrained metamorphosed ultramafic and mafic rocks, and as horst blocks, possibly diapirically emplaced, of serpentinized ultramafics partially draped with unconsolidated serpentine slump deposits and mud flows. The clayand silt-sized serpentine recovered from three sites on Conical Seamount on the Mariana forearc region and from two sites on Torishima Forearc Seamount on the Izu-Bonin forearc region is composed predominantly of chrysotile, brucite, chlorite, and clays. A variety of accessory minerals attest to the presence of unusual pore fluids in some of the samples. Aragonite, unstable at the depths at which the serpentine deposits were drilled, is present in many of the surficial cores from Conical Seamount. Sjogrenite minerals, commonly found as weathering products of serpentine resulting from interaction with groundwater, are found in most of the samples. The presence of aragonite and carbonate-hydroxide hydrate minerals argues for interaction of the serpentine deposits with fluids other than seawater. There are numerous examples of sedimentary serpentinite deposits exposed on land that are very similar to the deposits recovered from the serpentine seamounts drilled on ODP Leg 125. We suggest that Conical Seamount may be a type locality for the study of in situ formation of many of these sedimentary serpentinite bodies. Further, we suggest that both the deposits drilled on Conical Seamount and on Torishima Forearc Seamount demonstrate that serpentinization can continue in situ within the seamounts through interaction of the serpentine deposits with both seawater and subduction-related fluids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The circum-Antarctic Southern Ocean is an important region for global marine food webs and carbon cycling because of sea-ice formation and its unique plankton ecosystem. However, the mechanisms underlying the installation of this distinct ecosystem and the geological timing of its development remain unknown. Here, we show, on the basis of fossil marine dinoflagellate cyst records, that a major restructuring of the Southern Ocean plankton ecosystem occurred abruptly and concomitant with the first major Antarctic glaciation in the earliest Oligocene (~33.6 million years ago). This turnover marks a regime shift in zooplankton-phytoplankton interactions and community structure, which indicates the appearance of eutrophic and seasonally productive environments on the Antarctic margin. We conclude that earliest Oligocene cooling, ice-sheet expansion, and subsequent sea-ice formation were important drivers of biotic evolution in the Southern Ocean.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Basalt samples recovered on Ocean Drilling Program Leg 120 from the Kerguelen Plateau were investigated by thermomagnetic analysis, X-ray diffraction, and ore microscopy. The basement samples could be divided into two groups based on Curie temperatures, cell-edge parameters, and optical magnetic mineralogy. Samples from Sites 748 and 750 underwent only low-temperature oxidation and displayed Curie temperatures for the titanomaghemites that ranged from 340° to 395°C. The basalts from Sites 747 and 749 mainly experienced high-temperature oxidation. High-temperature oxidation produced titanium-poor titanomagnetites with ilmenite-exsolution lamellae. Curie temperatures of the deuterically oxidized titanomaghemites varied from 490° to 620°C.