513 resultados para Late early Oligocene


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Larval stages are among those most vulnerable to ocean acidification (OA). Projected atmospheric CO2 levels for the end of this century may lead to negative impacts on communities dominated by calcifying taxa with planktonic life stages. We exposed Mediterranean mussel (Mytilus galloprovincialis) sperm and early life stages to pHT levels of 8.0 (current pH) and 7.6 (2100 level) by manipulating pCO2 level (380 and 1000 ppm). Sperm activity was examined at ambient temperatures (16-17 °C) using individual males as replicates. We also assessed the effects of temperature (ambient and = 20 °C) and pH on larval size, survival, respiration and calcification of late trochophore/early D-veliger stages using a cross-factorial design. Increased pCO2 had a negative effect on the percentage of motile sperm (mean response ratio R= 71%) and sperm swimming speed (R= 74%), possibly indicating reduced fertilization capacity of sperm in low concentrations. Increased temperature had a more prominent effect on larval stages than pCO2, reducing performance (RSize = 90% and RSurvival = 70%) and increasing energy demand (RRespiration = 429%). We observed no significant interactions between pCO2 and temperature. Our results suggest that increasing temperature might have a larger impact on very early larval stages of M. galloprovincialis than OA at levels predicted for the end of the century.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transition from last glacial to deglacial and subsequently to modern interglacial climate conditions was accompanied by abrupt shifts in the palaeoceanographic setting in the subpolar North Atlantic. Knowledge about the role that sea ice coverage played during these rapid climate reversals is limited since most marine sediment cores from the higher latitudes provide only a coarse temporal resolution and often poorly preserved microfossils. Here we present a highly resolved reconstruction of sea ice conditions that characterised the eastern Fram Strait - a key area for water mass exchange between the Arctic Ocean and the North Atlantic - for the past 30 ka BP. This reconstruction is based on the distribution of the sea ice biomarker IP25 and phytoplankton derived biomarkers in a sediment core from the continental slope of western Svalbard. During the late glacial (30 ka to 19 ka BP), recurrent advances and retreats of sea ice characterised the study area and point to a hitherto less considered oceanic (and/or atmospheric) variability. A long-lasting perennial sea ice coverage in eastern Fram Strait persisted only at the very end of the Last Glacial Maximum (i.e. from 19.2 to 17.6 ka BP) and was abruptly reduced at the onset of Heinrich Event 1 - coincident with or possibly even inducing the collapse of the Atlantic Meridional Overturning Circulation (AMOC). Further maximum sea ice conditions prevailed during the Younger Dryas cooling event and support the assumption of an AMOC reduction due to increased formation and export of Arctic sea ice through Fram Strait. A significant retreat of sea ice and sea surface warming are observed for the Early Holocene.