664 resultados para Indian Ocean on monsoon
Resumo:
Chloroform extracts of water-soluble organic matter collected in the water column from the surface to the bottom were studied by C-13 and H-1 NMR chromatographic mass spectrometry, and phthalate concentrations were determined by capillary gas-liquid chromatography. More than 14 compounds were found including diethyl phthalate, ethyl butyl phthalate, dibutyl phthalate, and di-2-ethylhexyl phthalate, phthalates with normal C4-C12 chains, phthalates partially esterified with methanol, and others, at total concentrations up to 0.4 mg/l. Possible reasons for presence of phthalates in oceans, sometimes in high concentrations, are discussed.
Resumo:
Geochemical changes in organic matter of bottom sediments from the Mozambique Basin at the river-sea barrier from the mouths of the Zambezi and Limpopo rivers toward the pelagic zone are discussed. Changes in bitumen, hydrolyzable material, humic acids, amino acids, n-alkanes, and polycyclic aromatic compounds resulting from genetic and diagenetic factors are described. This information is significant for paleoceanology reconstructions and for knowing ways of organic matter transformation into fossil forms.
Resumo:
We report the occurrence of ferrobasalts recovered from the Central Indian Ocean Basin crust generated at the Southeast Indian Ridge during a phase of moderate to fast spreading accretion (~110-190 mm/yr, full rate).The rocks are rich in plagioclase, FeO* (13/19 %), and TiO2 (2.27/2.76 %), poor in olivine and MgO (3.44/6.20%), and associated with topographic highs and increased amplitude magnetic anomalies corresponding to chrons A25 and A24. We suggest that secon dary eruptions from ancient N-MORB magma, which may have been trapped at a shallow depth in a horizon of neutral buoyancy, could have produced the ferrobasalts.
Resumo:
Oxygen isotopic and microfaunal analyses and shell size variations of Orbulina universa in two Indian Ocean cores indicate that the position of the Subtropical Convergence has fluctuated between a northern limit north of 31°S during glacial stages and its present, maximum southern limit. The northward displacement of the Subtropical Convergence to a position off Durban, South Africa, reflects the general weakness of the Agulhas Current during glacial stages and parts of interglacial stages, representing about 65 percent of the past 540,000 years.