523 resultados para 135-834B
Resumo:
For the first time, short-chain organic acids are described in interstitial waters from sediments and lithified materials in a backarc setting. Organic acids in interstitial waters from the Tonga forearc region were also analyzed and compared with previous organic acid analyses from the Mariana and Bonin forearc interstitial waters. In the Tonga backarc setting, propionate typically dominates the organic acid assemblage, and organic acids are a consistent feature of these interstitial waters. The persistent presence of ammonia and the dominance of propionate over formate in the backarc interstitial waters suggest that the organic acids in this setting have their origin in reductive deamination of amino acids derived from sedimentary proteinaceous material. The organic acid assemblage revealed in the samples from Hole 841B in the Tonga forearc are similar to the organic acid assemblage detected in the Mariana forearc, that is, formate dominates the assemblage over acetate or propionate. These forearc organic acid assemblages may both have formed by a similar mechanism.
Resumo:
Hole 841B was drilled in the forearc region of the Lau Basin at a water depth of 4810 m. The hole penetrated a roughly 500-m-thick series of Miocene volcanic sediments with a number of basaltic to andesitic units (sills?) varying in thickness between 7 cm and 17 m. The volcanics are slightly to moderately altered and contain analcite, chabazite, natrolite-thompsonite, heulandite (?), prehnite, and quartz as secondary phases. In addition, thaumasite [Ca3Si(OH)6 * 12H2O](SO4)(CO3) was identified in the altered sequence. Sulfur isotope data of two thaumasite separates (+23.5 per mil and +21.1 per mil d34S) indicate a seawater origin of the sulfate sulfur. It is suggested that thaumasite is a product of low-temperature (<60 °C), seawater-derived CaCl2-rich fluids that were almost identical in composition to those presently circulating in the sub-seafloor.
Resumo:
Ocean Drilling Program Leg 135 provided igneous rock cores from six sites drilled on a transect across the Lau Basin between the Lau Ridge remnant arc and the modem spreading ridges of the Central and Eastern Lau Spreading Centers. The drill cores sampled crust from the earliest stage of backarc extension (latest Miocene time, about 6 Ma), and younger crust (late Pliocene, about 3.8-2 Ma, and middle Pleistocene, about 0.64-0.8 Ma). Nearly all of the igneous samples are from tholeiitic basalt flows; many of them are interbedded with arc-composition volcaniclastic sediments. Rock compositions range from olivine-plagioclase-clinopyroxene basalt, with up to 8% MgO, to oceanic andesites with less than 3.2% MgO and silica contents as high as 56%. The oldest rocks recovered are close in composition to rocks formed at the modern Central and Eastern Lau Spreading Centers and have MORB-like characteristics. Generation of the oldest units was coeval with arc-tholeiitic volcanism on the Lau Ridge less than 100 km to the west. The arc and backarc melts came from different mantle sources. At three sites near the center of the basin, the crust is arc-tholeiitic basalt, two-pyroxene basaltic-andesite, and two-pyroxene andesite. These rocks have many similarities to modem Tofua Arc lavas yet they were drilled within 70 km of the MORB-like Eastern Lau Spreading Center. Estimates of the minimum age for these arc-like rocks indicate that they are late Pliocene (about 2 Ma). These ages overlap the age of the nearby Eastern Lau Spreading Center. The heterogeneous crust of the Lau Basin carries many of the signatures of supra-subduction zone (SSZ) melts but also has a distinct MORB-like component. Mixing between SSZ and MORB mantle sources may explain the variations and the spatial distribution of magma types.
Resumo:
The results of inductively coupled argon plasma (ICAP) chemical analyses carried out on some 300 core samples from Ocean Drilling Program Sites 834, 835, 838, and 839 are presented. These sites were drilled during Leg 135 in the Lau Basin. The data are compared with total gamma (SGR) wireline logs at Sites 834 and 835. Pliocene (Piacenzian) nannofossil Zone CN12, which has been identified at Sites 834 and 835, is examined in detail using spectral analyses on core and wireline logs. The potassium and calcium concentrations from the core material were used to calculate an objective depth-to-geological time stretching function, which improved the stratigraphic correlation between sites. The integrated use of chemical analyses, wireline-log data and paleomagnetic results improved confidence in the correlations obtained. Although no significant sedimentation periodicities were obtained from the two sites, a common concentration of energy between 30 and 60 k.y. was recorded.
Resumo:
Several samples from the rhyolitic lavas encountered in Hole 841 B in the Tonga Forearc were made available by A. Ewart for potassiumargon (K-Ar) dating in an attempt to constrain the age of the eruptions. The material was supplied in crushed form and consisted primarily of volcanic glass together with some microphenocrysts made up mainly of plagioclase and quartz. Plagioclase could not be separated in sufficient amount for dating, especially as the potassium content of the plagioclase was quite low (~0.055% K). Petrographic examination of the volcanic glass indicated that it was remarkably fresh: it was clear, unaltered, and essentially isotopic. Thus, it was decided to attempt to date the volcanic glass.