523 resultados para 135-834A


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sedimentary succession drilled at Sites 840 and 841 on the Tonga forearc allows the sedimentary evolution of the active margin to be reconstructed since shortly after the initiation of subduction during the mid Eocene. Sedimentation has been dominated by submarine fan deposits, principally volcaniclastic turbidites and mass-flows derived from the volcanic arc. Volcaniclastic sedimentation occurred against a background of pelagic nannofossil sedimentation. A number of upward-fining cycles are recognized and are correlated to regional tectonic events, such as the rifting of the Lau Basin at 5.6 Ma. Episodes of sedimentation dating from 16.0 and 10.0 Ma also correlate well with major falls in eustatic sea level and may be at least partially caused by the resulting enhanced erosion of the arc edifice. The early stages of rifting of the Lau Basin are marked by the formation of a brief hiatus at Site 840 (Horizon A), probably a result of the uplift of the Tonga Platform. Controversy exists as to the degree and timing of the uplift of Site 840 before Lau Basin rifting, with estimates ranging from 2500 to 300 m. Structural information favors a lower value. Breakup of the Tonga Arc during rifting resulted in deposition of dacite-dominated, volcaniclastic mass flows, probably reflecting a maximum in arc volcanism at this time. A pelagic interval at Site 840 suggests that no volcanic arc was present adjacent to the Tonga Platform from 5.0 to 3.0 Ma. This represents the time between separation of the Lau Ridge from the Tonga Platform and the start of activity on the Tofua Arc at 3.0 Ma. The sedimentary successions at both sites provide a record of the arc volcanism despite the reworked nature of the deposits. Probe analyses of volcanic glass grains from Site 840 indicate a consistent low-K tholeiite chemistry from 7.0 Ma to the present, possibly reflecting sediment sourcing from a single volcanic center over long periods of time. Trace and rare-earth-element (REE) analyses of basaltic glass grains indicate that thinning of the arc lithosphere had begun by 7.0 Ma and was the principle cause of a progressive depletion of the high-field-strength (HFSE), REE, and large-ion-lithophile (LILE) elements within the arc magmas before rifting. Magmatic underplating of the Tofua Arc has reversed this trend since that time. Increasing fluid flux from the subducting slab since basin rifting has caused a progressive enrichment in LILEs. Subduction erosion of the underside of the forearc lithosphere has caused continuous subsidence and tilting toward the trench since 37.0 Ma. Enhanced subsidence occurred during rifting of the South Fiji and Lau basins. Collision of the Louisville Ridge with the trench has caused no change in the nature of the sedimentation, but it may have been responsible for up to 300 m of uplift at Site 840.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hole 841B was drilled in the forearc region of the Lau Basin at a water depth of 4810 m. The hole penetrated a roughly 500-m-thick series of Miocene volcanic sediments with a number of basaltic to andesitic units (sills?) varying in thickness between 7 cm and 17 m. The volcanics are slightly to moderately altered and contain analcite, chabazite, natrolite-thompsonite, heulandite (?), prehnite, and quartz as secondary phases. In addition, thaumasite [Ca3Si(OH)6 * 12H2O](SO4)(CO3) was identified in the altered sequence. Sulfur isotope data of two thaumasite separates (+23.5 per mil and +21.1 per mil d34S) indicate a seawater origin of the sulfate sulfur. It is suggested that thaumasite is a product of low-temperature (<60 °C), seawater-derived CaCl2-rich fluids that were almost identical in composition to those presently circulating in the sub-seafloor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ocean Drilling Program Leg 135 provided igneous rock cores from six sites drilled on a transect across the Lau Basin between the Lau Ridge remnant arc and the modem spreading ridges of the Central and Eastern Lau Spreading Centers. The drill cores sampled crust from the earliest stage of backarc extension (latest Miocene time, about 6 Ma), and younger crust (late Pliocene, about 3.8-2 Ma, and middle Pleistocene, about 0.64-0.8 Ma). Nearly all of the igneous samples are from tholeiitic basalt flows; many of them are interbedded with arc-composition volcaniclastic sediments. Rock compositions range from olivine-plagioclase-clinopyroxene basalt, with up to 8% MgO, to oceanic andesites with less than 3.2% MgO and silica contents as high as 56%. The oldest rocks recovered are close in composition to rocks formed at the modern Central and Eastern Lau Spreading Centers and have MORB-like characteristics. Generation of the oldest units was coeval with arc-tholeiitic volcanism on the Lau Ridge less than 100 km to the west. The arc and backarc melts came from different mantle sources. At three sites near the center of the basin, the crust is arc-tholeiitic basalt, two-pyroxene basaltic-andesite, and two-pyroxene andesite. These rocks have many similarities to modem Tofua Arc lavas yet they were drilled within 70 km of the MORB-like Eastern Lau Spreading Center. Estimates of the minimum age for these arc-like rocks indicate that they are late Pliocene (about 2 Ma). These ages overlap the age of the nearby Eastern Lau Spreading Center. The heterogeneous crust of the Lau Basin carries many of the signatures of supra-subduction zone (SSZ) melts but also has a distinct MORB-like component. Mixing between SSZ and MORB mantle sources may explain the variations and the spatial distribution of magma types.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The results of inductively coupled argon plasma (ICAP) chemical analyses carried out on some 300 core samples from Ocean Drilling Program Sites 834, 835, 838, and 839 are presented. These sites were drilled during Leg 135 in the Lau Basin. The data are compared with total gamma (SGR) wireline logs at Sites 834 and 835. Pliocene (Piacenzian) nannofossil Zone CN12, which has been identified at Sites 834 and 835, is examined in detail using spectral analyses on core and wireline logs. The potassium and calcium concentrations from the core material were used to calculate an objective depth-to-geological time stretching function, which improved the stratigraphic correlation between sites. The integrated use of chemical analyses, wireline-log data and paleomagnetic results improved confidence in the correlations obtained. Although no significant sedimentation periodicities were obtained from the two sites, a common concentration of energy between 30 and 60 k.y. was recorded.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Concentrations of dark-colored, highly vesicular, quench-textured mesostasis occur commonly in volcanic rocks drilled in the Lau Basin during Leg 135. These segregations occur as veins, patches, and vesicle linings in rocks with 49%-54% SiO2. The segregations are depleted in Mg, Ca, Al, Sc, Ni, and Cr and enriched in Ti, Ba, Y, and Zr compared to the groundmass with which they occur. Many of the segregations are unusually enriched in copper. The elemental variations show that the segregations are residual liquids produced by 12%-55% crystallization of plagioclase and clinopyroxene, with minor olivine, opaques, or orthopyroxene from the groundmass melt. The liquids forming the segregations are mobilized and emplaced in earlier formed vesicles during the rapid crystallization of the groundmass. The dominant process in this mobilization and emplacement is volatile exsolution from crystallizing melts constrained by a rigid crystalline framework. This exsolution produces significant overpressures within the late-stage melts; the overpressure drives the residual melts through the walls of the older vesicles, along planes of weakness, and into voids. This mechanism is consistent with the occurrence of bimodal vesicle populations in many of the host lavas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several samples from the rhyolitic lavas encountered in Hole 841 B in the Tonga Forearc were made available by A. Ewart for potassiumargon (K-Ar) dating in an attempt to constrain the age of the eruptions. The material was supplied in crushed form and consisted primarily of volcanic glass together with some microphenocrysts made up mainly of plagioclase and quartz. Plagioclase could not be separated in sufficient amount for dating, especially as the potassium content of the plagioclase was quite low (~0.055% K). Petrographic examination of the volcanic glass indicated that it was remarkably fresh: it was clear, unaltered, and essentially isotopic. Thus, it was decided to attempt to date the volcanic glass.