506 resultados para Chemical elements
Resumo:
Mn, Fe, Ca, Co, Ni, Cu, Zn, Cd, Sn, Tl, Pb and Bi have been estimated in thirty-two nodules from the Pacific, Atlantic and Indian oceans. Various features about the composition of manganese nodules are discussed: element abundances, degrees of enrichment, inter-element relationships (notably between Ni and Cu, and between Zn and Cd), regional variations and some aspects of statistical distribution.
Resumo:
A University of Hawaii oceanographic cruise, Abyssal Hills 69, with the R/V Mahi, was carried out to study the association of manganese nodules with an abyssal hill. Manganese nodules from three dredge hauls on an abyssal hill located at 36°W and 157°W exhibited differences in morphology and composition between stations only three miles apart. The morphology of the nodules suggests that nodules from a single site have similar morphologies because they began growth at the same time, probably because of a volcanic event. Differences in morphology between stations indicate a local supply of elements. Atomic absorption analysis for manganese, iron, cobalt, nickel, and copper revealed that nodules nearest to a probable fault line and source of volcanism have a, lower manganese to iron ratio than nodules farther removed. This finding supports the theory that volcanism contributes to the formation of some nodules. Additional evidence showing association with volcanism consists of volcanic nuclei in nodules, crusts formed on layers of volcanic ash, and basalt encrusted to various degrees. The variation in cobalt, nickel, and copper contents Gt the nodules from a single dredge is two-to threefold, but iron content is more uniiorm. Four of the six cores from the area increased in manganese concentration with depth, suggesting that diffusion is concentrating manganese in the upper zone of the sediments or in nodules. The author concludes that volcanism is contributing to the formation of nodules by supplying nuclei and transition elements, but is not necessary for the formation of manganese nodules.
Resumo:
Hole 841B was drilled in the forearc region of the Lau Basin at a water depth of 4810 m. The hole penetrated a roughly 500-m-thick series of Miocene volcanic sediments with a number of basaltic to andesitic units (sills?) varying in thickness between 7 cm and 17 m. The volcanics are slightly to moderately altered and contain analcite, chabazite, natrolite-thompsonite, heulandite (?), prehnite, and quartz as secondary phases. In addition, thaumasite [Ca3Si(OH)6 * 12H2O](SO4)(CO3) was identified in the altered sequence. Sulfur isotope data of two thaumasite separates (+23.5 per mil and +21.1 per mil d34S) indicate a seawater origin of the sulfate sulfur. It is suggested that thaumasite is a product of low-temperature (<60 °C), seawater-derived CaCl2-rich fluids that were almost identical in composition to those presently circulating in the sub-seafloor.
Resumo:
The comparison of Mn/Fe, Co/Ni, Co/Fe, Ni/Mn, and Cu/Fe ratios is presented and it is noticed that Co/Ni and Ni/Mn ratios of nodules fairly coincide with those of coexisting sediments. This agreement suggests that Mn, Ni, and Co are accumulated in both nodules and sediments at about the same rates. According to the calculation of Somayajulu et al. similar consideration is also applicable to Cu. Results are, however, implying that Cu co-precipitates with Fe, rather than Mn.
Resumo:
A radioisotope energy-dispersive X-ray (EDX) system has been used on board the German research vessel "Valdivia" during an exploration expedition in the northern equatorial Pacific in 1973. The instrumentation used consisted of an X-ray detection system incorporating a 30 mm2 effective-area Si (Li) detector with a measured energy resolution of 195 eV for Mn K alpha X-rays, standard nuclear electronics, a 1024-channel analyser and a data read-out unit. The X-ray spectra in the manganese-nodule samples were excited by a 30-mCi 238Pu source. The six elements Mn, Fe, Co, Ni, Cu and Zn were analysed on board. Precision values for the analyses were less than 3% for Mn, Fe, Ni, Cu and Zn and about 5% for Co. A total amount of 350 analyses was carried out during a one-month cruise. Average contents of 190 analysed whole manganese-nodule samples from all the sampling sites of the covered area were 23.3% Mn, 6.7% Fe, 0.23% Co, 1.16% Ni, 0.94% Cu and 0.10% Zn. The average content of the base metals expressed as the sum of the Co, Ni, Cu and Zn contents was 2.48%. A linear relationship between Mn and Ni in all analysed samples, including whole manganese-nodule samples, zones of manganese nodules and manganese crusts, was observed. The Mn/Ni ratio calculated by regression analysis was 23.0. Zonal variations of the chemical contents of the six elements in the manganese nodules were found. A size classification of the manganese nodules has been suggested. Geochemical correlations of Cu and Ni versus Mn/Fe in the investigated samples are given.
Resumo:
Processes of authigenic manganese ore formation in sediments of the North Equatorial Pacific are considered on the basis of a study of the surface layer (<2 mm) of a ferromanganese nodule and four micronodule size fractions from associated surface sediment (0-7 cm). Inhomogeneity of nodule composition is shown. Mn/Fe ratio is maximal in samples from lateral sectors of the nodule at the water-sediment interface. Compositional differences of nodules are related to preferential accumulation of trace elements in iron oxyhydroxides (P, Sr, Pb, U, Bi, Th, Y, and REE), manganese hydroxides (Co, Ni, Cu, Zn, Cd, Mo, Tl, W), and lithogenic component trapped during nodule growth (Ga, Rb, Ba, and Cs). Ce accumulation in the REE composition is maximal in the upper and lower parts of the nodule characterized by minimal Mn/Fe values. A compositional comparison of manganese micronodules and surface layers of the nodule demonstrates that micronodule material was subjected to more intense reworking during diagenesis of sediments. The micronodules are characterized by higher Mn/Fe and P/Fe, but lower Ni/Cu and Co/Ni ratios. The micronodules and nodules do not differ in terms of contents of Ce and Th that are the least mobile elements during diagenesis. Differences in chemical composition of the micronodules and nodules are related not only to additional input of Mn in the process of diagenesis, but also to transformation of iron oxyhydroxides after removal of Mn from the close association with Fe formed in suspended matter during sedimentation.
Resumo:
Hydrogenous manganese nodules form on the ocean floor by slow authigenic precipitation (1-6 mm/Ma) of the oxyhydroxides of manganese and iron that continuously scavenge trace elements from the marine environment. Consequently, these nodules represent independent marine deposits useful for the study of the chemical signatures of the paleomarine environments. The results presented are a continuation of a study of the Zetes-3D nodule from the Pacific Ocean. It is a large (24x17x10 cm) hydrogenous nodule whose slow growth rate of 1.3 mm/Ma was detremined using 10Be techniques. A positive cerium anomaly is observed throughout the nodule and its Ir content indicates a sharp spike at 54-62 Ma in fair agreement with the K-T event.
Resumo:
Compositional data for coexisting manganese nodules, micronodules, sediments and pore waters from five areas in the equatorial and S.W. Pacific have been obtained. This represents the largest study of its type ever undertaken to establish the distribution of elements between the various phases within the sediment column. The composition of manganese nodules, micronodules and sediments (on a carbonate-free basis) shows marked differences between the equatorial high productivity zone and the low productivity region of the S.W. Pacific. In the case of the nodules, th is reflects an increased supply of transition elements (notably Ni, Cu and Zn) to the nodules as a result of the in situ dissolution of siliceous tests within the sediment column in the equatorial Pacific high productivity zone. Micronodules display similar, but somewhat different, compositions to those of the associated nodules in each area. Micronodule composition is therefore influenced by the same basic factors that control nodule composition, but is modified by dissolution of the micronodules in situ within the sediment column. Locally, as in the area immediately south of the Marquesas Fracture Zone, the micronodule population is contaminated by small, angular volcanic rock fragments; this leads to apparently anomalous micronodule compositions. Micronodules appear to be a transient feature in the sediment column, especially in the equatorial Pacific. Dissolution of micronodules in the sediment column therefore represents an important source of elements for the growth of manganese nodules in the equatorial Pacific. Sediment composition is markedly influenced by the carbonate content. On a carbonate-free basis, the sediments from the equatorial high productivity zone are quite distinct in composition from those in the S.W. Pacific. This reflects differences in the lithology of the sediments. In the Aitutaki Passage, the local influence of volcanoclastic material in sediment composition has been established. The major cations and anions in pore waters measured here show no major differences between equatorial and S.W. Pacific sediments. Silica is, however, higher in equatorial Pacific pore waters reflecting the dissolution of siliceous tests in these sediments.
Resumo:
Petrographic and geochemical analyses of basaltic rocks dredged from the first segment of the Southwest Indian Ridge near the Rodriguez Triple Junction have been completed in order to investigate water-rock interaction processes during mid-ocean ridge (MOR) hydrothermal alteration in the Indian Ocean. In the study area, we have successfully recovered a serial section of upper oceanic crust exposed along a steep rift valley wall which was uplifted and emplaced along a low angle normal fault. On the basis of microscopic observation, dredged samples are classified into three types: fresh lavas, low-temperature altered rocks, and high-temperature altered rocks. The fresh lavas have essentially the same chemical composition as typical N-MORB, although LILE and Nb are slightly enriched and depleted, respectively. Low temperature alteration brought about the enrichment of K2O, Rb, and U due to the presence of K-rich celadonite and U-adsorption onto Fe-oxyhydroxide and clay minerals. On the other hand, chloritization, albitization, and addition of base metals by high temperature hydrothermal alteration result in enrichments of MnO, MgO, Na2O, Cu, and Zn and depletions of CaO, K2O, Cr, Co, Ni, Rb, Sr, and Ba. In addition, U-enrichment is also observable in the high temperature altered rocks probably due to the decrease of uranite solubility in the reducing high-temperature hydrothermal solution. These petrological and geochemical features are comparable to those of the volcanic zone to transition zone rocks in the DSDP/ODP Hole 504B, indicating that our samples were recovered from the upper ~1000 m section of the oceanic crust. Only the alteration minerals related to off-axis alteration are absent in our samples dredged from near the spreading axis. The similarity of alteration between our samples from the Indian Ocean and the Hole 504B rocks from the Pacific Ocean suggests that MOR hydrothermal systems are probably similar across all world oceans.
Resumo:
Considerable regional variations in the chemical composition of manganese nodules from a wide range of the Pacific Ocean have been observed. These variations can be more exactly expressed in terms of inter-element relationships. In particular, Cu-Mn and Cu-Ni associations reveal that Cu content in pelagic nodules increases rapidly in proportion to those of Mn or Ni. In nodules from continental borderland and hemipelagic areas, even if Mn or Ni contents increase, that of Cu increases only slightly. It is suggested that the considerable chemical differences within individual nodules and between nodules from the same site, at a limited pelagic area where there is no marked change in depositional conditions of nodules, are due to the role of hydrolyzable trace elements in the formation of nodules.
Resumo:
Mineralogical and chemical analyses performed on 67 ferromanganese nodules from widely varying locations and depths within the marine environment of the Pacific Ocean indicate that the minor element composition is controlled by the mineralogy and that the formation of the mineral phases is depth dependent. The pressure effect upon the thermodynamics or kinetics of mineral formation is suggested as the governing agent in the depth dependence of the mineralogy. The minor elements, Pb and Co, appear concentrated in the dMnO2 phase, whereas Cu and Ni are more or less excluded from this phase. In the manganites, Pb and Co are relatively low in concentration, whereas Cu and Ni are spread over a wide range of values. The oxidation of Pb and Co from divalent forms in sea water to higher states can explain their concentration in the dMnO2 phase.