670 resultados para Calculated from electrical resistivity measurements


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increasing atmospheric CO2 concentrations are potentially affecting marine ecosystems twofold, by warming and acidification. The rising amount of CO2 taken up by the ocean lowers the saturation state of calcium carbonate, complicating the formation of this key biomineral used by many marine organisms to build hard parts like skeletons or shells. Reliable time-series data of seawater pH are needed to evaluate the ongoing change and compare long-term trends and natural variability. For the high-latitude ocean, the region facing the strongest CO2 uptake, such time-series data are so far entirely lacking. Our study provides, to our knowledge, the first reconstruction of seasonal cycle and long-term trend in pH for a high-latitude ocean obtained from 2D images of stable boron isotopes from a coralline alga.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The wet bulk density is one of the most important parameters of the physical and geological properties of marine sediments. The density is connected directly with sedimentation history and a few sedirnent properties. Knowledge of the fine scale density-depth structure is the base for many model calculations, for both sedimentological and palaeoclimatic research. A density measurement system was designed and built at the Alfred Wegener Institute in Bremerhaven for measuring the wet buk density of sediment cores with high resolution in a non-destructive way. The density is deterrnined by measuring the absorption of Gamma-rays in the sediment. This principle has been used since the 50's in materials research and in the geosciences. In the present case, Cs137 is used as the radioactive source and the intensity is measured by a detector system (scintillator and photomultiplier). Density values are obtainable in both longitudinal core sections and planar cross-sections (the latter are a function of the axial rotation angle). Special studies on inhomogenity can be applied with core rotation. Detection of ice rafted debris (IRD) is made possible with this option. The processes that run the density measurement system are computer controlled. Besides the absorption measurement the core diameter at every measurement point is determined with a potentiometric system. The data values taken are stored on a personal computer. Before starting routine measurements on the sediment cores, a few experiments conceming the statistical aspects of the gamma-ray signal and its accuracy were carried out. These experiments led to such things as the optimum operational parameters. A high spatial resolution in the mm-range is possible with the 4mm-thin gamma-ray measurements. Within five seconds the wet bulk density can be deterrnined with an absolute accuracy of 1%. A comparison between data measured with the new system and conventional measurements on core samples after core splitting shows an agreement within +I- 5% for most of the values. For this thesis, density determinations were carried out on ten sediment cores. A few sediment characteristics are obtainable from using just the standard measurement results without core rotation. In addition to differentes and steps in the absolute density range, variations in the "frequency" of the density-depth structure can be detected due to the close spatial measurement interval and high resolution. Examples from measurements with small (9°) and great (90°) angle increments show that abrupt and smooth transitional changes of sedirnent layers as well as ice rafted debris of several dimensions can be detected and distiflguished clearly. After the presentation of the wet bulk density results, a comparison with data from other investigations was made. Measurements of the electrical resistivity correlated very well with the density data because both parameters are closely related to the porosity of the sedirnent. Additionally, results from measurements of the magnetic susceptibility and from ultra-sonic wave velocity investigations were considered for a integrative interpretation. The correlation of these both parameters and wet bulk density data is strongly dependent on the local (environmental) conditions. Finally, the densities were compared with recordings from sediment-echographic soundings and an X-ray computer tomography analysis. The individual results of all investigations were then finally combined into an accurate picture of the core. Problems of ambiguity, which exist when just one Parameter is determined alone, can be reduced more or less according to the number of parameters and sedimentary characteristics measured. The important role of the density data among other parameters of such an integrated interpretation is evident. Evidence of this role include the high resolution of the measurement, the excellent accuracy and the key position within methods and parameters concerning marine sediments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A suite of petropysical measurements - velocity versus pressure, bulk density, porosity, matrix density, and magnetic susceptibility -was undertaken on 63 core plugs from CRP-2A. These data are used to calibrate neutron, resistivity, and magnetic susceptibility well logs. Agreement between core-plug magnetic susceptibility measurements and both well-log and whole-core data is excellent. Comparison of core-plug bulk densities with continious well-log density records shows very good agreement. Core-plug measurements of matrix density permit conversion of the well-log and whole-core density records to porosity. Sands and muds exhibit similar downhole compaction patterns, and both patterns are consistent with 250 ± 150 m of exhumation. Pervasive cementation, particularly in the lower half of the core, has affected many CRP-2A petrophysical parameters: (1) fractional porosities are reduced by about 0.05 - 0.10 in the lower part of the hole; (2) velocity and porosity rebound are much smaller than is usually observed for unconsolidated sediments with burial depths similar to CRP-2A; (3) velocities are unusually insensitive to pressure, suggesting that any exhumation-induced microcracks have been scaled subsequently; (4) the velocity/porosity relationship lacks the characteristic signature of exhumation-induced microcracks; (5) the velocity/porosity relationship changes with depth, indicating downhole increase in consolidation; (6) Vp/Vs ratios of the highest-porosity sediments are unusually low, implying enhancement of framework stiffness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Compressional- and shear-wave velocity logs (Vp and Vs, respectively) that were run to a sub-basement depth of 1013 m (1287.5 m sub-bottom) in Hole 504B suggest the presence of Layer 2A and document the presence of layers 2B and 2C on the Costa Rica Rift. Layer 2A extends from the mudline to 225 m sub-basement and is characterized by compressional-wave velocities of 4.0 km/s or less. Layer 2B extends from 225 to 900 m and may be divided into two intervals: an upper level from 225 to 600 m in which Vp decreases slowly from 5.0 to 4.8 km/s and a lower level from 600 to about 900 m in which Vp increases slowly to 6.0 km/s. In Layer 2C, which was logged for about 100 m to a depth of 1 km, Vp and Vs appear to be constant at 6.0 and 3.2 km/s, respectively. This velocity structure is consistent with, but more detailed than the structure determined by the oblique seismic experiment in the same hole. Since laboratory measurements of the compressional- and shear-wave velocity of samples from Hole 504B at Pconfining = Pdifferential average 6.0 and 3.2 km/s respectively, and show only slight increases with depth, we conclude that the velocity structure of Layer 2 is controlled almost entirely by variations in porosity and that the crack porosity of Layer 2C approaches zero. A comparison between the compressional-wave velocities determined by logging and the formation porosities calculated from the results of the large-scale resistivity experiment using Archie's Law suggest that the velocity- porosity relation derived by Hyndman et al. (1984) for laboratory samples serves as an upper bound for Vp, and the noninteractive relation derived by Toksöz et al. (1976) for cracks with an aspect ratio a = 1/32 serves as a lower bound.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiproxy geologic records of d18O and Mg/Ca in fossil foraminifera from sediments under the Eastern Pacific Warm Pool (EPWP) region west of Central America document variations in upper ocean temperature, pycnocline strength, and salinity (i.e., net precipitation) over the past 30 kyr. Although evident in the paleotemperature record, there is no glacial-interglacial difference in paleosalinity, suggesting that tropical hydrologic changes do not respond passively to high-latitude ice sheets and oceans. Millennial variations in paleosalinity with amplitudes as high as 4 practical salinity units occur with a dominant period of 3-5 ky during the glacial/deglacial interval and 1.0-1.5 ky during the Holocene. The amplitude of the EPWP paleosalinity changes greatly exceeds that of published Caribbean and western tropical Pacific paleosalinity records. EPWP paleosalinity changes correspond to millennial-scale climate changes in the surface and deep Atlantic and the high northern latitudes, with generally higher (lower) paleosalinity during cold (warm) events. In addition to Intertropical Convergence Zone (ITCZ) dynamics, which play an important role in tropical hydrologic variability, changes in Atlantic-Pacific moisture transport, which is closely linked to ITCZ dynamics, may also contribute to hydrologic variations in the EPWP. Calculations of interbasin salinity average and interbasin salinity contrast between the EPWP and the Caribbean help differentiate long-term changes in mean ITCZ position and Atlantic-Pacific moisture transport, respectively.