867 resultados para Al2o3-cao-mgo-sio2
Resumo:
The fate of subducted sediment and the extent to which it is dehydrated and/or melted before incorporation into arc lavas has profound implications for the thermo-mechanical nature of the mantle wedge and models for crustal evolution. In order to address these issues, we have undertaken the first measurements of 10Be and light elements in lavas from the Tonga-Kermadec arc and the sediment profile at DSDP site 204 outboard of the trench. The 10Be/9Be ratios in the Tonga lavas are lower than predicted from flux models but can be explained if (a) previously estimated sediment contributions are too high by a factor of 2-10, (b) the top 1-22 m of the incoming sediment is accreted, (c) large amounts of sediment erosion are proposed, or (d) the sediment component takes several Myr longer than the subducting plate to reach the magma source region beneath Tonga. The lavas form negative Th/Be-Li/Be arrays that extend from a depleted mantle source composition to lower Th/Be and Li/Be ratios than that of the bulk sediment. Thus, these arrays are not easily explained by bulk sediment addition and, using partition coefficients derived from experiments on the in-coming sediment, we show that they are also unlikely to result from fluid released during dehydration of the sediment (or altered oceanic crust). However, partial melts of the dehydrated sediment residue formed at ~800 °C during the breakdown of amphibole +/- plagioclase and in the absence of cordierite have significantly lowered Th/Be ratios. The lava arrays can be successfully modelled as 10-15% partial melts of depleted mantle after it has been enriched by the addition of 0.2-2% of these partial melts. Phase relations suggest that this requires that the top of the subducting crust reaches temperatures of ~800 °C by the time it attains ~ 80 km depth which is in excellent agreement with the results of recent numerical models incorporating a temperature-dependent mantle viscosity. Under these conditions the wet basalt solidus is also crossed yet there is no recognisable eclogitic signal in the lavas suggesting that on-going dehydration or strong thermal gradients in the upper part of the subducting plate inhibit partialmelting of the altered oceanic crust.
Resumo:
Sulfide mineralogy and the contents and isotope compositions of sulfur were analyzed in a complete oceanic volcanic section from IODP Hole 1256D in the eastern Pacific, in order to investigate the role of microbes and their effect on the sulfur budget in altered upper oceanic crust. Basalts in the 800 m thick volcanic section are affected by a pervasive low-temperature background alteration and have mean sulfur contents of 530 ppm, reflecting loss of sulfur relative to fresh glass through degassing during eruption and alteration by seawater. Alteration halos along fractures average 155 ppm sulfur and are more oxidized, have high SO4/Sum S ratios (0.43), and lost sulfur through oxidation by seawater compared to host rocks. Although sulfur was lost locally, sulfur was subsequently gained through fixation of seawater-derived sulfur in secondary pyrite and marcasite in veins and in concentrations at the boundary between alteration halos and host rocks. Negative d34S[sulfide-S] values (down to -30 per mil) and low temperatures of alteration (down to ~40 °C) point to microbial reduction of seawater sulfate as the process resulting in local additions of sulfide-S. Mass balance calculations indicate that 15-20% of the sulfur in the volcanic section is microbially derived, with the bulk altered volcanic section containing 940 ppm S, and with d34S shifted to -6.0 per mil from the mantle value (0 per mil). The bulk volcanic section may have gained or lost sulfur overall. The annual flux of microbial sulfur into oceanic basement based on Hole 1256D is 3-4 * 10**10 mol S/yr, within an order of magnitude of the riverine sulfate source and the sedimentary pyrite sink. Results indicate a flux of bacterially derived sulfur that is fixed in upper ocean basement of 7-8 * 10**-8 mol/cm**-2/yr1 over 15 m.y. This is comparable to that in open ocean sediment sites, but is one to two orders of magnitude less than for ocean margin sediments. The global annual subduction of sulfur in altered oceanic basalt lavas based on Hole 1256D is 1.5-2.0 * 10**11 mol/yr, comparable to the subduction of sulfide in sediments, and could contribute to sediment-like sulfur isotope heterogeneities in the mantle.
Resumo:
Major and trace element analyses are presented for 110 samples from the DSDP Leg 60 basement cores drilled along a transect across the Mariana Trough, arc, fore-arc, and Trench at about 18°N. The igneous rocks forming breccias at Site 453 in the west Mariana Trough include plutonic cumulates and basalts with calc-alkaline affinities. Basalts recovered from Sites 454 and 456 in the Mariana Trough include types with compositions similar to normal MORB and types with calc-alkaline affinities within a single hole. At Site 454 the basalts show a complete compositional transition between normal MORB and calc-alkaline basalts. These basalts may be the result of mixing of the two magma types in small sub-crustal magma reservoirs or assimilation of calc-alkaline, arc-derived vitric tuffs by normal MORB magmas during eruption or intrusion. A basaltic andesite clast in the breccia recovered from Site 457 on the active Mariana arc and samples dredged from a seamount in the Mariana arc are calc-alkaline and similar in composition to the basalts recovered from the Mariana Trough and West Mariana Ridge. Primitive island arc tholeiites were recovered from all four sites (Sites 458-461) drilled on the fore-arc and arc-side wall of the trench. These basalts form a coherent compositional group distinct from the Mariana arc, West Mariana arc, and Mariana Trough calc-alkaline lavas, indicating temporal (and perhaps spatial?) chemical variations in the arc magmas erupted along the transect. Much of the 209 meters of basement cored at Site 458 consists of endiopside- and bronzite-bearing, Mg-rich andesites with compositions related to boninites. These andesites have the very low Ti, Zr, Ti/Zr, P, and rare-earthelement contents characteristic of boninites, although they are slightly light-rare-earth-depleted and have lower MgO, Cr, Ni, and higher CaO and Al2O3 contents than those reported for typical boninites. The large variations in chemistry observed in the lavas recovered from this transect suggest that diverse mantle source compositions and complex petrogenetic process are involved in forming crustal rocks at this intra-oceanic active plate margin.
Resumo:
Geomorphology of the Guinea Basin is described along with sediments from cores collected on the abyssal plain, within the abyssal hill zone, and in the eastern part of the Chain Fracture Zone. Stratigraphic differentiation of deep-sea sediments was based on diatom analysis, geochemical and lithological data. Holocene and Pleistocene were identified by these criteria. The lower boundary of Holocene is was found from a marked decrease in CaCO3 concentration and total diatom count. Mineral and chemical compositions are given for coarse silt fraction of various Late Pleistocene sediments. It is shown that this facial complex is determined by tectonic position of the Guinea Basin.
Resumo:
The monograph highlights extensive materials collected during expeditions of P.P. Shirshov Institute of Oceanology. We consider facial conditions of nodule formation, regularities of their distribution, stratigraphic position, petrography, mineral composition, textures, geochemistry of nodules and hosting sediments. Origin of iron-manganese nodules in the Pacific Ocean is considered as well.
Resumo:
The Taupo Volcanic Zone (TVZ), central North Island, New Zealand, is the most frequently active Quaternary rhyolitic system in the world. Silicic tephras recovered from Ocean Drilling Programme Site 1123 (41°47.16'S, 171°29.94'W; 3290 m water depth) in the southwest Pacific Ocean provide a well-dated record of explosive TVZ volcanism since ~1.65 Ma. We present major, minor and trace element data for 70 Quaternary tephra layers from Site 1123 determined by electron probe microanalysis (1314 analyses) and laser ablation inductively coupled plasma mass spectrometry (654 analyses). Trace element data allow for the discrimination of different tephras with similar major element chemistries and the establishment of isochronous tie-lines between three sediment cores (1123A, 1123B and 1123C) recovered from Site 1123. These tephra tie-lines are used to evaluate the stratigraphy and orbitally tuned stable isotope age model of the Site 1123 composite record. Trace element fingerprinting of tephras identifies ~4.5 m and ~7.9 m thick sections of repeated sediments in 1123A (49.0-53.5 mbsf [metres below seafloor]) and 1123C (48.1-56.0 mbsf), respectively. These previously unrecognised repeated sections have resulted in significant errors in the Site 1123 composite stratigraphy and age model for the interval 1.15-1.38 Ma and can explain the poor correspondence between d18O profiles for Site 1123 and Site 849 (equatorial Pacific) during this interval. The revised composite stratigraphy for Site 1123 shows that the 70 tephra layers, when correlated between cores, correspond to ~37-38 individual eruptive events (tephras), 7 of which can be correlated to onshore TVZ deposits. The frequency of large-volume TVZ-derived silicic eruptions, as recorded by the deposition of tephras at Site 1123, has not been uniform through time. Rather it has been typified by short periods (25-50 ka) of intense activity bracketed by longer periods (100-130 ka) of quiescence. The most active period (at least 1 event per 7 ka) occurred between ~1.53 and 1.66 Ma, corresponding to the first ~130 ka of TVZ rhyolitic magmatism. Since 1.2 Ma, ~80% of tephras preserved at Site 1123 and the more proximal Site 1124 were erupted and deposited during glacial periods. This feature may reflect either enhanced atmospheric transport of volcanic ash to these sites (up to 1000 km from source) during glacial conditions or, more speculatively, that these events are triggered by changes in crustal stress accumulation associated with large amplitude sea-level changes. Only 8 of the ~37-38 Site 1123 tephra units (~20%) can be found in all three cores, and 22 tephra units (~60%) are only present in one of the three cores. Whether a tephra is preserved in all three cores does not have any direct relationship to eruptive volume. Instead it is postulated that tephra preservation at Site 1123 is 'patchy' and influenced by the vigorous nature of their deposition to the deep ocean floor as vertical density currents. At this site, at least 5 cores would need to have been drilled within a proximity of 10's to 100's of metres of each other to yield a >99% chance of recovering all the silicic tephras deposited on the ocean surface above it in the past 1.65 Ma.
Resumo:
Basaltic rocks recovered at the Middle America Trench area off Mexico are typical plagioclase-olivine phyric abyssal tholeiites containing less than 0.2 wt.% K2O. Phenocrysts of plagioclase and olivine usually make up the aggregate. Plagioclase phenocrysts are Ca-rich and up to An90. Olivine phenocrysts, which are always attached to plagioclase phenocrysts, are magnesian, Fo88 to Fo89, and contain 0.2 to 0.3 wt. % of NiO. Plagioclase phenocrysts contain numerous glass inclusions with the Mg/Mg+Fe atomic ratio of 0.70 to 0.73, which is distinctly higher than the same ratio of the bulk rock (0.62-0.63). Olivine of Fo88 to Fo89 is equilibrated with the liquid with an Mg/Mg+Fe atomic ratio of about 0.7, assuming the KDMg-Fe between liquid and olivine of 0.3. Small droplets of glass within glass inclusions in plagioclase are more enriched in K2O and volatiles than the host glass. This enrichment may have been caused by the extraction of Al2O3 as plagioclase from the trapped liquid and implies its immiscibility. Aggregates of plagioclase with small amounts of olivine may have been floated from more primitive magma with an Mg/Mg+Fe atomic ratio of about 0.7, judging from the chemical characteristics mentioned above. Flotation must have occurred at relatively high pressure. Large crystals of plagioclase and smaller crystals of olivine are xenocryst rather than phenocryst. Parental magma of Leg 66 basalt was high-MgO olivine tholeiite.
Resumo:
To examine the processes and histories of arc volcanism and of volcanism associated with backarc rifting. 130 samples containing igneous glass shards were taken from the Plioccne-Quatemai^ succession on the rift Hank (Site 788) and the Quaternary fill in the basin fill of the Sumisu Rift (Sites 790 and 791). These samples were subsequently analyzed at the University of Illinois at Chicago and Shizuoka University. The oxides determined by electron probe do not account for the total weight of the material; differences between summed oxides and 100% arise from the water contents, probably augmented by minor losses thai result from alkali vaporization during analysis. Weight losses in colorless glasses are up to 9%; those in brown glasses (dacitcs to basalts) arc no more than 4.5%; shards from the rift-flank (possibly caused by prolonged proximity to ihc scafloor) generally have higher values than those from the rift-basin fill How much of the lost water is magmatic, and how much is hydrated is uncertain; however, although the shards absorb potassium, calcium, and magnesium during hydration in the deep sea, they do so only to a minor extent that does not significantly alter their major element compositions. Therefore, the electron-probe results are useful in evaluating the magmatism recorded by the shards. Pre- and syn-rift Izu-Bonin volcanism were overwhelmingly dominated by rhyolile explosions, demonstrating that island arcs may experience significant silicic volcanism in addition to the extensive basaltic and basaltic andestic activity, documented in many arcs since the 1970s, that occurs in conjunction with the andesitic volcanism formerly thought to be dominant. Andesitic eruptions also occurred before rifting, but the andesitic component in our samples is minor. All the pre- and syn-rift rhyolites and andesites belong to the low-alkali island-arc tholeiitic suite, and contrast markedly with the alkali products of Holocene volcanism on the northernmost Mariana Arc that have been attributed to nascent rifting. The Quaternary dacites and andesites atop the rift flank and in the rift-basin fill are more potassic than those of Pliocene age, as a result of assimilation from the upper arc crust, or from variations in degrees of partial melting of the source magmas, or from metasomatic fluids. All the glass layers from the rift-flank samples belong to low-K arc-tholeiitic suites. Half of those in the Pliocene succession are exclusively rhyolitic: the others contain minor admixtures of dacite and andesite, or andesite and either basaltic andesite or basalt. In Contrast, the Quaternary (syn-rift) volcaniclastics atop the rift-flank lack basalt and basaltic andesite shards. These youngest sediments of the rift flank show close compositional affinities with five thick layers of coarse, rhyolitic pumice deposits in the basin fill, the two oldest more silicic than the younger ones. The coarse layers, and most thin ash layers that occur in hemipelagites below and intercalated between them, are low-K rhyolites and therefore probably came from sources in the arc. However, several thin rhyolitic ash beds in the hemipelagites are abnormally enriched in potassium and must have been provided by more distal sources, most likely to the west in Japan. Remarkably, the Pliocene-Pleistocene geochemistry of the volcanic front does not appear to have been influenced by the syn-rift basaltic volcanism only a few kilometers away. Rare, thin layers of basaltic ash near the bases of the rift-basin successions are not derived from the arc. They deviate strongly from trends that the arc-derived glasses display on oxide-oxide plots, and show close affinities to the basalts empted all over the Sumisu Rift during rifting. These basalts, and the basaltic ashes in the basal rift-basin fill, arc compositionally similar to those erupted from mature backarc basins elsewhere.
Resumo:
Many ash-rich layers, varying from a few millimeters to several centimeters thick, were identified in the sedimentary sequences penetrated during Ocean Drilling Program Leg 125 at Sites 782, 784, and 786, located about 400 to 500 km south of Tokyo in the Bonin forearc. The total age range of the ash layers is from Eocene to Pleistocene, although not all sites cover this full span. The ashes consist of vitric, microlite-bearing, and crystal-rich components; the glassy shards are typically highly vesicular, with elongate, flattened bubbles. The dominant crystalline phases are orthopyroxene, clinopyroxene, and plagioclase. The major-element compositions of individual vitric shards collected from selected layers of Holes 782A, 784A, and 786A were determined by electron microprobe analyses; particular care was taken to ensure that the analytical results were not compromised by electron beam damage to the glasses. Compositions range from basalt through andesite and dacite to rhyolite and generally belong to a tholeiitic, low-K suite. There is no indication of any regular secular change during the evolution of the Bonin arc from tholeiitic through calc-alkalic to alkali compositions with time. In Holes 782A and 784A, some high-K rhyolite compositions of late Miocene and Pleistocene age are present. A clear chemical distinction has existed since arc inception between the source(s) of these ashes and the upper mantle source(s) tapped during construction of the igneous basement that formed the forearc.
Resumo:
The Mariana arc-trench system, the easternmost of a series of backarc basins and intervening remnant arcs that form the eastern edge of the Philippine Sea Plate, is a well-known example of an intraoceanic convergence zone. Its evolution has been studied by numerous investigators over nearly two decades (e.g., Kang, 1971; Uyeda and Kanamori, 1979; LaTraille and Hussong, 1980; Fryer and Hussong, 1981; Mrosowski et al., 1982; Hussong and Uyeda, 1981; Bloomer and Hawkins, 1983; Karig and Ranken, 1983; McCabe and Uyeda, 1983; Hsui and Youngquist, 1985; Fryer and Fryer, 1987; Johnson and Fryer, 1988; Johnson and Fryer, 1989; Johnson et al., 1991). The Mariana forearc has undergone extensive vertical uplift and subsidence in response to seamount collision, to tensional and rotational fracturing associated with adjustments to plate subduction, and to changes in the configuration of the arc (Hussong and Uyeda, 1981; Fryer et al., 1985). Serpentine seamounts, up to 2500 m high and 30 km in diameter, occur in a broad zone along the outer-arc high (Fryer et al., 1985; Fryer and Fryer, 1987). These seamounts may be horsts of serpentinized ultramafic rocks or may have been formed by the extrusion of serpentine muds. Conical Seamount, one of these serpentine seamounts, is located within this broad zone of forearc seamounts, about 80 km from the trench axis, at about 19°30'N. The seamount is approximately 20 km in diameter and rises 1500 m above the surrounding seafloor. Alvin submersible, R/V Sonne bottom photography, seismic reflection, and SeaMARC II studies indicate that the surface of this seamount is composed of unconsolidated serpentine muds that contain clasts of serpentinized ultramafic and metamorphosed mafic rocks, and authigenic carbonate and silicate minerals (Saboda et al., 1987; Haggerty, 1987; Fryer et al., 1990; Saboda, 1991). During Leg 125, three sites were drilled (two flank sites and one summit site) on Conical Seamount to investigate the origin and evolution of the seamount. Site 778 (19°29.93'N, 146°39.94'E) is located in the midflank region of the southern quadrant of Conical Seamount at a depth of 3913.7 meters below sea level (mbsl) (Fig. 2). This site is located in the center of a major region of serpentine flows (Fryer et al., 1985, 1990). Site 779 (19°30.75'N, 146°41.75'E), about 3.5 km northeast of Site 778, is located approximately in the midflank region of the southeast quadrant of Conical Seamount, at a depth of 3947.2 mbsl. This area is mantled by a pelagic sediment cover, overlying exposures of unconsolidated serpentine muds that contain serpentinized clasts of mafic and ultramafic rocks (Fryer et al., 1985, 1990). Site 780 (19°32.5'N, 146°39.2'E) is located on the western side of Conical Seamount near the summit, at a depth of 3083.4 mbsl. This area is only partly sediment covered and lies near active venting fields where chimney structures are forming (Fryer et al., 1990).
Resumo:
The Yangla copper deposit, situated in the middle section of Jinshajiang tectonic belt between Zhongza-Zhongdian block and Changdu-Simao block, is a representative and giant copper deposit that has been discovered in Jinshajiang-Lancangjiang-Nujiang region in recent years. There are coupled relationship between Yangla granodiorite and copper mineralization in the Yangla copper deposit. Five molybdenite samples yielded a well-constrained 187Re-187Os isochron age of 233.3±3 Ma, the metallogenesis is therefore slightly younger than the crystallization age of the granodiorite. S, Pb isotopic compositions of the Yangla copper deposit indicate that the ore-forming materials were derived from the mixture of upper crust and mantle, also with the magmatic contributions. In the late Early Permian, the Jinshajiang Oceanic plate was subducted to the west, resulting in the formation of a series of gently dipping thrust faults in the Jinshajiang tectonic belt, meanwhile, accompanied magmatic activities. In the early Late Triassic, which was a time of transition from collision-related compression to extension in the Jinshajiang tectonic belt, the thrust faults were tensional; it would have been a favorable environment for forming ore fluids. The ascending magma provided a channel for the ore-forming fluid from the mantle wedge. After the magma arrived at the base of the early-stage Yangla granodiorite, the platy granodiorite at the base of the body would have shielded the late-stage magma from the fluid. The magma would have cooled slowly, and some of the ore-forming fluid in the magma would have entered the gently dipping thrust faults near the Yangla granodiorite, resulting in mineralization.
Resumo:
Refractive index and chemical composition were determined for glass shards contained in more than 100 tephra layers in DSDP Leg 58 sediment cores collected in the Shikoku Basin, North Philippine Sea. The refractive index is consistent with chemical composition. Refractive index and total iron show a linear relationship. Tephra in Pleistocene and Pliocene sediments is mostly rhyolitic and dacitic (non-alkali), whereas tephra in the Miocene shows wide composition variations in the eastern part of the basin. Basaltic tephra is recognized in Miocene sediments at Sites 443 and 444, but not at Site 442, west of the other two sites. This indicates that the basaltic tephra came from eruption relatively close to those drill sites (perhaps the Kinan Seamounts and the Shichito-Iwo Jima volcanic arc), although the exact source has not been identified.
Resumo:
Samples collected from the coarse basal portions of mid-Cretaceous volcaniclastic turbidites from the Mariana and Pigafetta basins are remarkably similar in terms of the petrographic and chemical features of their igneous clasts and bulk rock composition. Clasts of magmatic origin are dominated by glassy vesicular shards, variably phyric, holocrystalline basalts, and crystal fragments (olivine, clinopyroxene, plagioclase, amphibole, and biotite). The composition of the pyroxenes and amphiboles are typical of those found in differentiated hydrous alkali basalts. The bulk chemical composition of the volcaniclastites (based on stable incompatible elements and their ratios in highly vitric samples) is characteristic of alkali basalts found in within-plate oceanic eruptive environments. Miocene volcaniclastites from Site 802 are broadly similar to the Cretaceous samples in terms of clast type and bulk composition, and have also been derived from an oceanic alkali basalt source. The chemistry of the Miocene volcaniclastites differ, however, in having distinctive Zr/Y and Zr/Nb ratios and a more restricted chemical composition. The magmatic products of nearly emergent seamounts within the western Pacific basins appears to have been dominated by alkali basalt volcanism during the mid-Cretaceous and also the Miocene. The highly vitric nature of the Cretaceous and Miocene volcaniclastites, together with the morphology and vesicularity of their shards, suggests that they are the reworked (via mass flow) products of hyaloclastite accumulations produced in a shallow-water eruptive environment, such as that adjacent to nearly emergent seamounts or ocean islands. The association of ooids, reefal debris, and, in rare cases, woody material with the volcaniclastites supports their shallow-water derivation.
Resumo:
The <63-µm fractions of serpentinite muds from two seamounts on the Mariana and Izu-Bonin forearcs were analyzed for mineral composition by X-ray diffraction and for chemical composition by X-ray fluorescence. The silt fraction of the muds consists predominantly of chrysotile, brucite, and ample amorphous constituents. Chlorite and smectite are less abundant components. Of special interest is the occurrence of iowaite, a brucite-like, Cl-bearing mineral with a layered structure. Iowaite was not found in the samples from the summit site of one of the seamounts drilled; however, it is scattered throughout the strata, composing the flanks of both seamounts investigated. No systematic change of the iowaite abundance with depth was observed. The distribution of iowaite is confined to the surface of the flanks of the seamount. Based on the distribution on the mineral and its chemical composition, we suggest that the iowaite formed by oxidation of some of the ferrous iron in brucite contained in the serpentine mud as it contacted abyssal seawater during protrusion onto the seafloor. The resulting positive charge imparted to the brucite was compensated by the uptake of seawater chloride. Consequently, the formation of iowaite is restricted to the seafloor where oxygen and chloride are available for these reactions. The availability of oxygen is considered the limiting factor. We conclude that iowaite formation cannot be a major cause for the low chlorinity of pore fluids inside the seamounts.
Resumo:
Based on chemical-thermodynamical balances the species distributions and mineral stabilities of the chemical compositions of the pressed pore solutions taken from a Baltic Sea mudsediment are evualuated by means of the computer program WATEQF (PLUMMER et al., 1976). According to these evaluations calcite and aragonite are to be found in supersaturation throughout the whole profile. The SiO2 concentration of the pore solutions is mainly controlled by the dissolutions of amorphous silica present in minimal undersaturation. By means of SEM pictures idiomorph quartzcrystals as well as presumptive clay minerals transformation and reformations could be proved as stable transformation phases of the dissolved SiO2 species. The stability of the solid phases containing Al-components as of feldspars and clayminerals decreases with increasing dept and is mainly controlled by AIF3 complexes higher concentrated with increasing depth.