771 resultados para concentration process
Resumo:
DSDP Leg 92 drilled at four sites along an east-west transect at 19°S on the western flank of the East Pacific Rise (EPR), in an area where sediments are essentially a mixture of hydrothermal and biogenic components, with only a minimal contribution of clastic material. Rare-earth element (REE) data on the metalliferous (non-carbonate) fraction of samples ranging in age from ~2 to ~27 Ma indicate the existence of two distinct groups of patterns corresponding to two broad age groups, one <=8 Ma, the other >=10 Ma. Within each group, REE patterns have characteristics which are near-uniform, despite large variations in total REE abundances. Sediments of the younger group are enriched in light REE (LREE) relative to deep bottom waters influenced by the hydrothermal plume extending west from the EPR at 19°S. Sediments of the older groups show further relative LREE enrichment and/or heavy REE (HREE) depletion. Surficial sediments deposited beneath the lysocline have high Sum REE concentrations resulting from slow accumulation rates, and patterns resembling older sediments due to early diagenetic effects. A correlation between the mass accumulation rates (MAR) of Sum REE and Fe + Mn suggests that ferromanganese particulate matter supplied by the hydrothermal plume scavenges REE; during this process the LREE are preferentially removed from plume seawater. The MAR of Fe + Mn shows a general decrease with age above basement, whereas Sum REE concentrations in the metalliferous component increase with age above basement. This supports the Ruhlin and Owen model wherein limited scavenging of REE, due to rapid burial of sediment near the palaeo-axis, leads to low concentrations (but high MAR-values) for the REE. Following deposition and burial of the hydrothermal component, further relative flattening of the REE pattern takes place, probably the result of diagenetic reactions over several million years. Phase partitioning data indicate that the proportion of REE residing in more poorly crystalline phases tends to increase with age (from ~45% to 90% of Sum REE). This suggests that as initial ferromanganese precipitates undergo diagenetic recrystallization, REE are transferred to the poorly crystalline phases, and/or are scavenged from pore waters by these phases. Because of the various modifications to REE patterns apparently produced both in the water column and post-depositional settings, the REE patterns of metalliferous sediments will not reflect fine-scale REE variations in associated oceanic water masses.
Resumo:
Hexachlorocyclohexanes (HCHs) are ubiquitous organic pollutants derived from pesticide application. They are subject to long-range transport, persistent in the environment, and capable of accumulation in biota. Shipboard measurements of HCH isomers (a-, b- and g-HCH) in surface seawater and boundary layer atmospheric samples were conducted in the Atlantic and the Southern Ocean in October to December of 2008. SumHCHs concentrations (the sum of a-, g- and b-HCH) in the lower atmosphere ranged from 12 to 37 pg/m**3 (mean: 27 ± 11 pg/m**3) in the Northern Hemisphere (NH), and from 1.5 to 4.0 pg/m**3 (mean: 2.8 ± 1.1 pg/m**3) in the Southern Hemisphere (SH), respectively. Water concentrations were: a-HCH 0.33-47 pg/l, g-HCH 0.02-33 pg/l and b-HCH 0.11-9.5 pg/l. Dissolved HCH concentrations decreased from the North Atlantic to the Southern Ocean, indicating historical use of HCHs in the NH. Spatial distribution showed increasing concentrations from the equator towards North and South latitudes illustrating the concept of cold trapping in high latitudes and less interhemispheric mixing process. In comparison to concentrations measured in 1987-1999/2000, gaseous HCHs were slightly lower, while dissolved HCHs decreased by factor of 2-3 orders of magnitude. Air-water exchange gradients suggested net deposition for a-HCH (mean: 3800 pg/m**2/day) and g-HCH (mean: 2000 pg/m**2/day), whereas b-HCH varied between equilibrium (volatilization: <0-12 pg/m**2/day) and net deposition (range: 6-690 pg/m**2/day). Climate change may significantly accelerate the release of "old" HCHs from continental storage (e.g. soil, vegetation and high mountains) and drive long-range transport from sources to deposition in the open oceans. Biological productivities may interfere with the air-water exchange process as well. Consequently, further investigation is necessary to elucidate the long term trends and the biogeochemical turnover of HCHs in the oceanic environment.