489 resultados para SeaBeam bathymetry


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transects of a Remotely Operated Vehicle (ROV) providing sea-bed videos and photographs were carried out during POLARSTERN expedition ANT-XIII/3 focussing on the ecology of benthic assemblages on the Antarctic shelf in the South-Eastern Weddell Sea. The ROV-system sprint 103 was equiped with two video- and one still camera, lights, flash-lights, compass, and parallel lasers providing a scale in the images, a tether-management system (TMS), a winch, and the board units. All cameras used the same main lense and could be tilted. Videos were recorded in Betacam-format and (film-)slides were made by decision of the scientific pilot. The latter were mainly made under the aspect to improve the identification of organisms depicted in the videos because the still photographs have a much higher optical resolution than the videos. In the photographs species larger than 3 mm, in the videos larger than 1 cm are recognisable and countable. Under optimum conditions the transects were strait; the speed and direction of the ROV were determined by the drift of the ship in the coastal current, since both, the ship and the ROV were used as a drifting system; the option to operate the vehicle actively was only used to avoide obstacles and to reach at best a distance of only approximately 30 cm to the sea-floor. As a consequence the width of the photographs in the foreground is approximately 50 cm. Deviations from this strategy resulted mainly from difficult ice- and weather conditions but also from high current velocity and local up-welling close to the sea-bed. The sea-bed images provide insights into the general composition of key species, higher systematic groups and ecological guilds. Within interdisciplinary approaches distributions of assemblages can be attributed to environmental conditions such as bathymetry, sediment characteristics, water masses and current regimes. The images also contain valuable information on how benthic species are associated to each other. Along the transects, small- to intermediate-scaled disturbances, e.g. by grounding icebergs were analysed and further impact to the entire benthic system by local succession of recolonisation was studied. This information can be used for models predicting the impact of climate change to benthic life in the Southern Ocean. All these approaches contribute to a better understanding of the fiunctioning of the benthic system and related components of the entire Antarctic marine ecosystem. Despite their scientific value the imaging methods meet concerns about the protection of sensitive Antarctic benthic systems since they are non-invasive and they also provide valuable material for education and outreach purposes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transects of a Remotely Operated Vehicle (ROV) providing sea-bed videos and photographs were carried out during POLARSTERN expedition ANT-XVII/3 focussing on the ecology of benthic assemblages on the Antarctic shelf in the South-Eastern Weddell Sea. The ROV-system sprint 103 was equiped with two video- and one still camera, lights, flash-lights, compass, and parallel lasers providing a scale in the images, a tether-management system (TMS), a winch, and the board units. All cameras used the same main lense and could be tilted. Videos were recorded in Betacam-format and (film-)slides were made by decision of the scientific pilot. The latter were mainly made under the aspect to improve the identification of organisms depicted in the videos because the still photographs have a much higher optical resolution than the videos. In the photographs species larger than 3 mm, in the videos larger than 1 cm are recognisable and countable. Under optimum conditions the transects were strait; the speed and direction of the ROV were determined by the drift of the ship in the coastal current, since both, the ship and the ROV were used as a drifting system; the option to operate the vehicle actively was only used to avoide obstacles and to reach at best a distance of only approximately 30 cm to the sea-floor. As a consequence the width of the photographs in the foreground is approximately 50 cm. Deviations from this strategy resulted mainly from difficult ice- and weather conditions but also from high current velocity and local up-welling close to the sea-bed. The sea-bed images provide insights into the general composition of key species, higher systematic groups and ecological guilds. Within interdisciplinary approaches distributions of assemblages can be attributed to environmental conditions such as bathymetry, sediment characteristics, water masses and current regimes. The images also contain valuable information on how benthic species are associated to each other. Along the transects, small- to intermediate-scaled disturbances, e.g. by grounding icebergs were analysed and further impact to the entire benthic system by local succession of recolonisation was studied. This information can be used for models predicting the impact of climate change to benthic life in the Southern Ocean. All these approaches contribute to a better understanding of the fiunctioning of the benthic system and related components of the entire Antarctic marine ecosystem. Despite their scientific value the imaging methods meet concerns about the protection of sensitive Antarctic benthic systems since they are non-invasive and they also provide valuable material for education and outreach purposes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A near-bottom geological and geophysical survey was conducted at the western intersection of the Siqueiros Transform Fault and the East Pacific Rise. Transform-fault shear appears to distort the east flank of the rise crest in an area north of the fracture zone. In ward-facing scarps trend 335° and do not parallel the regional axis of spreading. Small-scale scarps reveal a hummocky bathymetry. The center of spreading is not a central peak but rather a 20-40 m deep, 1 km wide valley superimposed upon an 8 km wide ridge-crest horst. Small-scale topography indicates widespread volcanic flows within the valley. Two 0.75 km wide blocks flank the central valley. Fault scarps are more dominant on the western flank. Their alignment shifts from directions intermediate to parallel to the regional axis of spreading (355°). A median ridge within the fracture zone has a fault-block topography similar to that of the East Pacific Rise to the north. Dominant eastward-facing scarps trending 335° are on the west flank. A central depression, 1 km wide and 30 m deep, separates the dominantly fault-block regime of the west from the smoother topography of the east flank. This ridge originated by uplift due to faulting as well as by volcanism. Detailed mapping was concentrated in a perched basin (Dante's Hole) at the intersection of the rise crest and the fracture zone. Structural features suggest that Dante's Hole is an area subject to extreme shear and tensional drag resulting from transition between non-rigid and rigid crustal behavior. Normal E-W crustal spreading is probably taking place well within the northern confines of the basin. Possible residual spreading of this isolated rise crest coupled with shear drag within the transform fault could explain the structural isolation of Dante's Hole from the remainder of the Siqueiros Transform Fault.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Antarctic Pack Ice Seal (APIS) Program was initiated in 1994 to estimate the abundance of four species of Antarctic phocids: the crabeater seal Lobodon carcinophaga, Weddell seal Leptonychotes weddellii, Ross seal Ommatophoca rossii and leopard seal Hydrurga leptonyx and to identify ecological relationships and habitat use patterns. The Atlantic sector of the Southern Ocean (the eastern sector of the Weddell Sea) was surveyed by research teams from Germany, Norway and South Africa using a range of aerial methods over five austral summers between 1996-1997 and 2000-2001. We used these observations to model densities of seals in the area, taking into account haul-out probabilities, survey-specific sighting probabilities and covariates derived from satellite-based ice concentrations and bathymetry. These models predicted the total abundance over the area bounded by the surveys (30°W and 10°E). In this sector of the coast, we estimated seal abundances of: 514 (95 % CI 337-886) x 10**3 crabeater seals, 60.0 (43.2-94.4) x 10**3 Weddell seals and 13.2 (5.50-39.7) x 10**3 leopard seals. The crabeater seal densities, approximately 14,000 seals per degree longitude, are similar to estimates obtained by surveys in the Pacific and Indian sectors by other APIS researchers. Very few Ross seals were observed (24 total), leading to a conservative estimate of 830 (119-2894) individuals over the study area. These results provide an important baseline against which to compare future changes in seal distribution and abundance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The distribution of living (Rose Bengal-stained), dead and fossil benthic foraminifera was investigated in six short cores (multicores, 30-32 cm total length) recovered from the central Red Sea. The ecological preferences as well as the relationship between the live and dead/fossil assemblages (preserved down-core) were examined. The sites, located along a W-E profile and between the depth of 366 and 1782 m, extend from the center of the oxygen minimum zone (OMZ, ~200-650 m), through its margin at ~600 m, and down to the well-aerated deep-water environment. Live (Rose-Bengal stained) and coexisting dead foraminifera were studied in the upper 5 cm of each of the sites, and the fossil record was studied down to ~32 cm. Q-mode Principal Component Analysis was used and four distinct foraminiferal fossil assemblages were determined. These assemblages follow different water mass properties. In the center of the OMZ, where the organic carbon content is highest and the oxygen concentration is lowest (<=0.5 ml O2/l), the Bolivina persiensis-Bulimina marginata-Discorbinella rhodiensis assemblage dominates. The slightly more aerated and lower organic-carbon-content seafloor, at the margin of the OMZ, is characterized by the Neouvigerina porrecta-Gyroidinoides cf. G. soldanii assemblage. The transitional environment, between 900-1200 m, with its well-aerated and oligotrophic seafloor, is dominated by the Neouvigerina ampullacea-Cibicides mabahethi assemblage. The deeper water (>1500 m), characterized by the most oxygenated and oligotrophic seafloor conditions, is associated with the Astrononion sp. A-Hanzawaia sp. A assemblage. Throughout the Red Sea extremely high values of temperature and salinity are constant below ~200 m depth, but the flux of organic matter to the sea floor varies considerably with bathymetry and appears to be the main controlling factor governing the distribution pattern of the benthic foraminifera. Comparison between live and the dead/fossil assemblages reveals a large difference between the two. Processes that may control this difference include species-specific high turnover rates, and preferential predation and loss of fragile taxa (either by chemical or microbial processes). Significant variations in the degree of loss of the organic-cemented agglutinants were observed down core. This group is preserved down to 5-10 cm at the shallow OMZ sites and down to greater depths at well-aerated and oligotrophic sites. The lower rate of disintegration of these forms, in the deeper locations of the Red Sea, may be related to low microbial activity. This results in the preservation of increasing numbers of organic-cemented shells down-core.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The deep sea sedimentary record is an archive of the pre-glacial to glacial development of Antarctica and changes in climate, tectonics and ocean circulation. Identification of the pre-glacial, transitional and full glacial components in the sedimentary record is necessary for ice sheet reconstruction and to build circum-Antarctic sediment thickness grids for past topography and bathymetry reconstructions, which constrain paleoclimate models. A ~3300 km long Weddell Sea to Scotia Sea transect consisting of multichannel seismic reflection data from various organisations, were used to interpret new horizons to define the initial basin-wide seismostratigraphy and to identify the pre-glacial to glacial components. We mapped seven main units of which three are in the inferred Cretaceous-Paleocene pre-glacial regime, one in the Eocene-Oligocene transitional regime and three units in the Miocene-Pleistocene full glacial climate regime. Sparse borehole data from ODP leg 113 and SHALDRIL constrain the ages of the upper three units. Compiled seafloor spreading magnetic anomalies constrain the basement ages and the hypothetical age model. In many cases, the new horizons and stratigraphy contradict the interpretations in local studies. Each seismic sedimentary unit and its associated base horizon are continuous and traceable for the entire transect length, but reflect a lateral change in age whilst representing the same deposition process. The up to 1240 m thick pre-glacial seismic units form a mound in the central Weddell Sea basin and, in conjunction with the eroded flank geometry, support the interpretation of a Cretaceous proto-Weddell Gyre. The base reflector of the transitional seismic unit, which marks the initial ice sheet advances to the outer shelf, has a lateral model age of 26.6-15.5 Ma from southeast to northwest. The Pliocene-Pleistocene glacial deposits reveals lower sedimentations rates, indicating a reduced sediment supply. Sedimentation rates for the pre-glacial, transitional and full glacial components are highest around the Antarctic Peninsula, indicating higher erosion and sediment supply of a younger basement. We interpret an Eocene East Antarctic Ice Sheet expansion, Oligocene grounding of the West Antarctic Ice Sheet and Early Miocene grounding of the Antarctic Peninsula Ice Sheet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The distribution, abundance, behaviour, and morphology of marine species is affected by spatial variability in the wave environment. Maps of wave metrics (e.g. significant wave height Hs, peak energy wave period Tp, and benthic wave orbital velocity URMS) are therefore useful for predictive ecological models of marine species and ecosystems. A number of techniques are available to generate maps of wave metrics, with varying levels of complexity in terms of input data requirements, operator knowledge, and computation time. Relatively simple "fetch-based" models are generated using geographic information system (GIS) layers of bathymetry and dominant wind speed and direction. More complex, but computationally expensive, "process-based" models are generated using numerical models such as the Simulating Waves Nearshore (SWAN) model. We generated maps of wave metrics based on both fetch-based and process-based models and asked whether predictive performance in models of benthic marine habitats differed. Predictive models of seagrass distribution for Moreton Bay, Southeast Queensland, and Lizard Island, Great Barrier Reef, Australia, were generated using maps based on each type of wave model. For Lizard Island, performance of the process-based wave maps was significantly better for describing the presence of seagrass, based on Hs, Tp, and URMS. Conversely, for the predictive model of seagrass in Moreton Bay, based on benthic light availability and Hs, there was no difference in performance using the maps of the different wave metrics. For predictive models where wave metrics are the dominant factor determining ecological processes it is recommended that process-based models be used. Our results suggest that for models where wave metrics provide secondarily useful information, either fetch- or process-based models may be equally useful.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ostracodes were studied from deep Arctic Ocean cores obtained during the Arctic 91 expedition of the Polarstern to the Nansen, Amundsen and Makarov Basins, the Lomonosov Ridge, Morris Jesup Rise and Yermak Plateau, in order to investigate their distribution in Arctic Ocean deep water (AODW) and apply these data to paleoceanographic reconstruction of bottom water masses during the Quaternary. Analyses of coretop assemblages from Arctic 91 boxcores indicate the following: ostracodes are common at all depths between 1000 and 4500 m, and species distribution is strongly influenced by water mass characteristics and bathymetry; quantitative analyses comparing Eurasian and Canada Basin assemblages indicate that distinct assemblages inhabit regions east and west of the Lomonosov Ridge, a barrier especially important to species living in lower AODW; deep Eurasian Basin assemblages are more similar to those living in Greenland Sea deep water (GSDW) than those in Canada Basin deep water; two upper AODW assemblages were recognized throughout the Arctic Ocean, one living between 1000 and 1500 m, and the other, having high species diversity, at 1500-3000 m. Downcore quantitative analyses of species' abundances and the squared chord distance coefficient of similarity reveals a distinct series of abundance peaks in key indicator taxa interpreted to signify the following late Quaternary deep water history of the Eurasian Basin. During the Last Glacial Maximum (LGM), a GSDW/AODW assemblage, characteristic of cold, well oxygenated deep water > 3000 m today, inhabited the Lomonosov Ridge to depths as shallow as 1000 m, perhaps indicating the influence of GSDW at mid-depths in the central Arctic Ocean. During Termination 1, a period of high organic productivity associated with a strong inflowing warm North Atlantic layer occurred. During the mid-Holocene, several key faunal events indicate a period of warming and/or enhanced flow between the Canada and Eurasian Basins. A long-term record of ostracode assemblages from kastenlot core PS2200-5 (1073 m water depth) from the Morris Jesup Rise indicates a quasi-cyclic pattern of water mass changes during the last 300 kyr. Interglacial ostracode assemblages corresponding to oxygen isotope stages 1, 5, and 7 indicate rapid changes in dissolved oxygen and productivity during glacial-interglacial transitions.