907 resultados para Ross Ice Shelf
Resumo:
The development of the seasonal phytoplankton bloom in the Ross Sea was studied during two cruises. The first, conducted in November-December 1994, investigated the initiation and rapid growth of the bloom, whereas the second (December 1995-January 1996) concentrated on the bloom's maximum biomass period and the subsequent decline in biomass. Central to the understanding of the controls of growth and the summer decline of the bloom is a quantitative assessment of the growth rate of phytoplankton. Growth rates were estimated over two time scales with different methods. The first estimated daily growth rates from isotropic incorporation under simulated in situ conditions, including 14C, 15N and 32Si uptake measurements combined with estimates of standing stocks of particulate organic carbon, nitrogen and biogenic silica. The second method used daily to weekly changes in biomass at selected locations, with net growth rates being estimated from changes in standing stocks of phytoplankton. In addition, growth rates were estimated in large-volume experiments under optimal irradiances. Growth rates showed distinct temporal patterns. Early in the growing season, short-term estimates suggested that growth rates of in situ assemblages were less than maximum (relative to the temperature-limited maximum) and were likely reduced due to low irradiance regimes encountered under the ice. Growth rates increased thereafter and appeared to reach their maximum as biomass approached the seasonal peak, but decreased markedly in late December. Differences between the major taxonomic groups present were also noted, especially from the isotopic tracer experiments. The haplophyte Phaeocystic antarctica was dominant in 1994 throughout the growing season, and it exhibited the greatest growth rates (mean 0.41/day) during spring. Diatom standing stocks were low early in the growing season, and growth rates averaged 0.100/day. In summer diatoms were more abundant, but their growth rates remained much lower (mean of 0.08/day) than the potential maximum. Understanding growth rate controls is essential to the development of predictive models of the carbon cycle and food webs in Antarctic waters.
Resumo:
Distribution patterns, petrography, whole-rock and mineral chemistry, and shape and fabric data are described for the most representative basement lithologies occurring as clasts (granule to bolder grain-size class) from the 625 m deep CRP-2/2A drillcore. A major change in the distribution pattern of the clast types occurs at c. 310 mbsf., with granitoid-dominated clasts above and mainly dolerite clasts below; moreover, compositional and modal data suggest a further division into seven main detrital assemblages or petrofacies. In spite of this variability, most granitoid pebbles consist of either pink or grey biotite±hornblende monzogranites. Other less common and ubiquitous lithologies include biotite syenogranite, biotite-hornblende granodiorite, tonalite, monzogranitic porphyries (very common below 310 mbsf), microgranite, and subordinately, monzogabbro, Ca-silicate rocks, biotite-clinozoisite schist and biotite orthogneiss (restricted to the pre-Pliocene strata). The ubiquitous occurrence of biotite±hornblende monzogranite pebbles in both the Quaternary-Pliocene and Miocene-Oligocene sections, apparently reflects the dominance of these lithologies in the onshore basement, and particularly in the Cambro-Ordovician Granite Harbour Igneous Complex which forms the most extensive outcrop in southern Victoria Land. The petrographical features of the other CRP-2/2A pebble lithologies are consistent with a supply dominantly from areas of the Transantarctic Mountains facing the CRP-2/2A site, and they thus provide further evidence of a local provenance for the supply of basement clasts to the CRP-2/2A sedimentary strata.
Resumo:
This paper presents a geotechnical characterization of the glacigenic sediments in Prydz Bay, East Antarctica, based on the shipboard physical properties data obtained during Leg 119, combined with results of land-based analyses of 24 whole-round core samples. Main emphasis is placed on the land-based studies, which included oedometer consolidation tests, triaxial and simple shear tests for undrained shear strength, permeability tests in oedometer and triaxial cell, Atterberg limits, and grain-size analyses. The bulk of the tested sediments comprise overconsolidated diamictites of a relatively uniform lithology. The overconsolidation results from a combination of glacial loading and sediment overburden subsequently removed by extensive glacial erosion of the shelf. This leads to downhole profiles of physical properties that have been observed not to change as a function of the thickness of present overburden. A number of fluctuations in the parameters shows a relatively systematic trend and most likely results from changes in the proximity to the ice sheet grounding line in response to variations in the glacial regime. Very low permeabilities mainly result from high preconsolidation stresses (Pc'). Pc' values up to 10,000 kPa were estimated from the oedometer tests, and empirical estimates based on undrained shear strengths (up to 2500 kPa) indicate that the oedometer results are conservative. The diamictites generally classify as inactive, of low to medium plasticity, and they consolidate with little deformation, even when subjected to great stresses. This is the first report of geotechnical data from deep boreholes on the Antarctic continental shelf, but material of similar character can also be expected in other areas around the Antarctic.