513 resultados para Late early Oligocene


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The principal paleoceanographic objective of Ocean Drilling Program Leg 115 was to collect a suite of materials that would allow reconstruction of the dynamic features of the late Cenozoic carbonate system in the equatorial Indian Ocean. This goal was achieved with the recovery of sediments from a closely spaced depth transect (1541-4428 m) of five sites (Sites 707 through 711) from on and around the Mascarene Plateau that record the last 50 m.y. of pelagic deposition. More than 2200 measurements of carbonate content are combined here with a highly resolved bio- and magnetostratigraphy to produce the first detailed compilation of bulk, carbonate, and noncarbonate mass accumulation rates (MARs) from the Indian Ocean. These results allow us to recognize three major depositional intervals, each characterized by a distinct depth-dependent pattern of carbonate accumulation: (1) the Paleogene, a time of moderate accumulation rates (0.4-0.7 g/cm**2/1000 yr) and reduced between-site accumulation differences; (2) the early and middle Miocene, a period characterized by greatly reduced carbonate MARs (typically <0.2 g/cm**2/1000 yr) at all sites and a shallow carbonate compensation depth; and (3) the late Miocene to Holocene, a time span marked by the highest bulk and carbonate accumulation rates of the last 50 Ma (1.6-1.8 g/cm**2/1000 yr), and the first appearance of substantial contrasts in carbonate accumulation as a function of the water depth of the drill site. The fundamentally different character of the carbonate system during each of these intervals must represent a regional response to the complex evolution of late Cenozoic oceans and climate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tropical planktonic foraminifers occur throughout the sequences at all sites of Leg 85, and the standard planktonic foraminiferal zonation of Blow (1969) is applicable to most of the recovered sequences. However, the abundance and state of preservation of foraminifers decline markedly in certain intervals because of the effects of dissolution. Although siliceous microfossils studied on this leg indicate recovery of nearly complete records for the Pleistocene to Oligocene interval, the planktonic foraminiferal biostratigraphy is interrupted by strongly dissolved sections at all sites. Particularly, faunas assignable to Zone N7 (early Miocene) and Zone N15-16 (early late Miocene) are almost totally unrecognizable throughout the eastern equatorial Pacific. Well-preserved and diverse planktonic foraminifers occur in the lower middle Miocene, where the evolutionary developments of Orbulina universa d'Orbigny and Globorotalia fohsi Cushman and Ellisor are well represented. The Orbulina first appearance datum is observed to be nearly coincident with the last occurrence level of the diatom Annellus californicus Tempère, thus .establishing an age of 15 Ma for this datum by using the paleomagnetic calibration of the diatom datum. Moderately well-preserved late Eocene planktonic foraminifers occur in the carbonate sediments immediately overlying the basalt basement at Sites 573 and 574. The Eocene-Oligocene faunal transition, however, is masked at both sites by an intercalation of metalliferous layers containing no planktonic foraminifers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The occurrence of Cenozoic silicoflagellates at three Ocean Drilling Program (ODP) Holes (660A, 662A, and 667A) was investigated to determine biostratigraphic and relative paleotemperature relations in the tropical Atlantic Ocean. This report presents the data obtained from a study of 37 samples and some preliminary comments on the data. The age of the single sparse assemblage at Hole 660A is late middle Eocene or late Eocene (Dictyocha hexacantha Zone); the sparse to common assemblages of Hole 667A are Oligocene and early Miocene and the common to abundant assemblages of Hole 662A are early Pliocene to Quaternary. Dissolution thinning of silicoflagellates is noted in most samples, even in Hole 662A, which is under the present productive Benguela Current.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New and published analyses of major element oxides (SiO2, TiO2, Al2O3, FeO*, MnO, MgO, CaO, K2O, Na2O and P2O5) from the central Izu Bonin and Mariana arcs (IBM) were compiled in order to investigate the evolution of the IBM in terms of major elements since arc inception at ~49 million years ago. The database comprises ?3500 volcanic glasses of distal tephra fallout and ?500 lava samples, ranging from the Quaternary to mid-Eocene in age. The data were corrected to 4 wt% MgO in order to display the highly resolved temporal trends. These trends show that the IBM major elements have always been "arc-like" and clearly distinct from N-MORB. Significant temporal variations of some major element oxides are apparent. The largest variations are displayed by K4.0. The data support a model wherein the K2O variability is caused by the addition of slab component with strongly differing K2O contents to a fairly depleted subarc mantle; variable extents of melting, or mantle heterogeneity, appear to play a negligible role. The other major element oxides are controlled by the composition and processes of the subarc mantle wedge. The transition from the boninitic and tholeiitic magmatism of the Eocene and Oligocene to the exclusively tholeiitic magmatism of the Neogene IBM is proposed to reflect a change in the composition of the subarc mantle wedge. The early boninitic magmas originate from an ultra-depleted subarc mantle, that is residual to either the melting of E-MORB mantle, or of subcontinental lithospheric mantle. During the Eocene and Oligocene, this residual mantle is gradually replaced by Indian MORB mantle advected from the backarc regions. The Indian MORB mantle is more radiogenic in Nd isotope ratios but also more fertile with respect to major and trace elements. Therefore the Neogene tholeiites have higher Al2O3 and TiO2 contents and lower mg# numbers at given SiO2 content. After the subarc mantle replacement was complete in the late Oligocene or early Miocene, the Neogene IBM entered a "steady state" that is characterized by the continuous advection of Indian MORB mantle from the reararc, which is fluxed by fluids and melt components from slab. The thickness of the IBM crust must have grown with time, but any effects of crustal thickening on the major element chemistry of the IBM magmas appear to be minor relative to the compositional changes that are related to source composition. Therefore next to the processes of melting, the composition of the mantle sources must play a major role in creating substantiative heterogeneities in the major element chemistry of the arc crust.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Results of a preliminary study of Early Cretaceous dinocyst assemblages from Site 765 on the Argo Abyssal Plain, off northwestern Australia, are presented. The palynological sequence is interpreted in terms of Australian zones and is, in descending order, the late Aptian Diconodinium davidii Zone (Cores 123-765C-33R to -39R), the middle to early Aptian Odontochitina operculata Zone (Cores 123-765C-40R to -49R), the Barremian Muderongia australis Zone (Cores 123-765C-50R to -54R), and the Berriasian lower Batioladinium reticulatum Zone (Core 123-765C-59R). The dating of the sequence as late Aptian to Berriasian on the basis of dinocysts is supported, in part, by data concerning associated foraminiferal, radiolarian, and calcareous nannofossil suites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A model is presented for hemipelagic siliciclastic and carbonate sedimentation during the last glacial-interglacial cycle in the Capricorn Channel, southern Great Barrier Reef (GBR). Stable isotope ratios, grainsize, carbonate content and mineralogy were analysed for seven cores in a depth transect from 166 to 2892 m below sea level (mbsl). Results show variations in the flux of terrigenous, neritic and pelagic sediments to the continental slope over the last sea level cycle. During the glacial lowstand terrigenous sediment influenced all the cores down to 2000 mbsl. The percentages of quartz and feldspar in the cores decreased with water depth, while the percentage of clay increased. X-ray diffraction analysis of the glacial lowstand clay mineralogy suggests that the siliciclastic sediment was primarily sourced from the Fitzroy River, which debouched directly into the northwest sector of the Capricorn Channel at this time. The cores also show a decrease in pelagic calcite and an increase in aragonite and high magnesium calcite (HMC) during the glacial. The influx of HMC and aragonite is most likely from reworking of coral reefs exposed on the continental shelf during the glacial, and also from HMC ooids precipitated at the head of the Capricorn Channel at this time. Mass accumulation rates (MARs) are high (13.5 g/cm**/kyr) during the glacial and peak at ~20 g/cm** 3/kyr in the early transgression (16-14 ka BP). MARs then decline with further sea level rise as the Fitzroy River mouth retreats from the edge of the continental shelf after 13.5 ka BP. MARs remain low (4 g/cm**3/kyr) throughout the Holocene highstand. Data for the Holocene highstand indicate there is a reduction in siliciclastic influx to the Capricorn Channel with little quartz and feldspar below 350 mbsl. However, fine-grained fluvial sediments, presumably from the Fitzroy River, were still accumulating on the mid slope down to 2000 mbsl. The proportion of pelagic calcite in the core tops increases with water depth, while HMC decreases, and is present only in trace amounts in cores below 1500 mbsl. The difference in the percentage of HMC in the deeper cores between the glacial and Holocene may reflect differences in supply or deepening of the HMC lysocline during the glacial. Sediment accumulation rates also vary between cores in the Capricorn Channel and do not show the expected exponential decrease with depth. This may be due to intermediate or deep water currents reworking the sediments. It is also possible that present bathymetry data are too sparse to detect the potential role that submarine channels may play in the distribution and accumulation of sediments. Comparison of the Capricorn Channel MARs with those for other mixed carbonate/siliciclastic provinces from the northeast margin of Australia indicates that peak MARs in the early transgression in the Capricorn Channel precede those from the central GBR and south of Fraser Island. The difference in the timing of the carbonate and siliciclastic MAR peaks along the northeast margin is primarily related to differences in the physiography and climate of the provinces. The only common trend in the MARs from the northeast margin of Australia is the near synchronicity of the carbonate and siliciclastic MAR peaks in individual sediment cores, which supports a coeval sedimentation model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Changes in Mississippian global paleogeography derived from the reconfiguration of the continents, a reversal in ocean currents and global cooling. Although the tectonic and climatic changes are well-documented, their effects on the distribution of brachiopod fauna are poorly documented. Here we present systematic quantitative analyses on global paleobiogeography based on a global brachiopod database from the Mississippian (i.e., Tournaisian, Visean, and Serpukhovian). The dataset consists of 2123 species of 344 brachiopod genera from 1156 localities. Our results reveal that global provincialism was not evident during the Tournaisian and Visean Stages. Two realms, i.e., the Gondwanan and Paleoequatorial Realms, are recognized during the Tournaisian. The Paleoequatorial Realm dominates during the Visean Stage, whereas the Gondwanan Realm is not documented due to the absence of data points. In contrast to the early and middle Mississippian stages, faunal provincialism is greatly enhanced in the Serpukhovian Stage with Paleotethyan and North American realms easily distinguished. This indicates that the Rheic Ocean was closed before the Serpukhovian due to the collision between Gondwana and Laurussia, that disrupted faunal interchange between the Paleotethys and North America. In addition, the paleolatitude-related thermal gradient was enhanced and the Boreal Realm was distinguished from the Paleotethyan Realm during the onset of the Late Palaeozoic Ice Age (LPIA) in the Serpukhovian. The paleolatitude diversity gradient pattern further shows a distinct shift of diversity center from the southern tropic zone in the Tournaisian and Visean to the northern tropic zone in the Serpukhovian.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ceara Rise, located east the Amazon River mouth, is covered with a thick blanket of pelagic carbonate and hemipelagic terrigenous sediment. The terrigenous component has been extracted from 57 bulk sediment samples at Ocean Drilling Program (ODP) Sites 925 and 929 on Ceara Rise to obtain a Cenozoic record of riverine discharge from northern South America. From the early Eocene to early Miocene (55-20 Ma), terrigenous accumulation was dominated by moderate amounts of generally large-grained, gray to green sediment especially depleted in elements that are enriched in post-Archaean shale (e.g. Cs, Th, Yb). However, pulsed inputs of relatively small-grained, gray to green terrigenous sediment less depleted in the above elements occurred in the late Eocene and Oligocene. The accumulation of terrigenous sediment decreased significantly until 16.5 Ma. In the middle Miocene (16.5-13 Ma), terrigenous accumulation was dominated by small amounts of small-grained, tan sediment notably depleted in Na and heavy rare earth elements. The accumulation rate of terrigenous sediment increased markedly from the latest Miocene (10 Ma) to the present day, a change characterized by deposition of gray-green sediment enriched in elements that are enriched in post-Archaean shale. Observed changes in terrigenous sediment at Ceara Rise record tectonism and erosion in northern South America. The Brazil and Guyana shields supplied sediment to the eastern South American margin until the middle Miocene (20-16.5 Ma) when a period of thrusting, shortening and uplift changed the source region, probably first to highly weathered and proximal Phanerozoic sediments. By the late Miocene (9 Ma), there was a transcontinental connection between the Andes and eastern South America. Weathering products derived from the Andes have increasingly dominated terrigenous deposition at Ceara Rise since the Late Miocene and especially since the late Pliocene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

At Ocean Drilling Program Sites 752 and 754, located on Broken Ridge in the eastern Indian Ocean, we recovered a sequence of shallow-water pelagic sediments that span the past 90 m.y. The Oligocene to Pleistocene portion of these sediments are unconsolidated carbonate oozes that display a coherent variation in bulk grain size. We believe these sediments to be winnowed, and suggest that their grain size is a measure of that winnowing energy. The largest increase in grain size, interpreted to represent an enhancement in the energy of ocean currents, occurs in the earliest late Miocene. This increase occurs about 20 m upcore from the oxygen isotope indication of ice-volume increase about 13 Ma, and is about 3 m.y. younger. If this distinct temporal separation between proxy indicators of ice volume and of current intensity observed in the Broken Ridge cores is correct, the general impression of paleoclimatologists that the planetary temperature gradient and therefore atmospheric and oceanic circulation intensity varies directly with ice volume needs to be reconsidered.