482 resultados para Jean-Pierre Ronfard
Resumo:
Ocean acidification and warming are expected to threaten the persistence of tropical coral reef ecosystems. As coral reefs face multiple stressors, the distribution and abundance of corals will depend on the successful dispersal and settlement of coral larvae under changing environmental conditions. To explore this scenario, we used metabolic rate, at holobiont and molecular levels, as an index for assessing the physiological plasticity of Pocillopora damicornis larvae from this site to conditions of ocean acidity and warming. Larvae were incubated for 6 hours in seawater containing combinations of CO2 concentration (450 and 950 µatm) and temperature (28 and 30°C). Rates of larval oxygen consumption were higher at elevated temperatures. In contrast, high CO2 levels elicited depressed metabolic rates, especially for larvae released later in the spawning period. Rates of citrate synthase, a rate-limiting enzyme in aerobic metabolism, suggested a biochemical limit for increasing oxidative capacity in coral larvae in a warming, acidifying ocean. Biological responses were also compared between larvae released from adult colonies on the same day (cohorts). The metabolic physiology of Pocillopora damicornis larvae varied significantly by day of release. Additionally, we used environmental data collected on a reef in Moorea, French Polynesia to provide information about what adult corals and larvae may currently experience in the field. An autonomous pH sensor provided a continuous time series of pH on the natal fringing reef. In February/March, 2011, pH values averaged 8.075±0.023. Our results suggest that without adaptation or acclimatization, only a portion of naïve Pocillopora damicornis larvae may have suitable metabolic phenotypes for maintaining function and fitness in an end-of-the century ocean.
Resumo:
This study tested the hypothesis that the response of corals to temperature and pCO2 is consistent between taxa. Juvenile massive Porites spp. and branches of P. rus from the back reef of Moorea were incubated for 1 month under combinations of temperature (29.3 °C and 25.6 °C) and pCO2 (41.6 Pa and 81.5 Pa) at an irradiance of 599 µmol quanta/m/s. Using microcosms and CO2 gas mixing technology, treatments were created in a partly nested design (tanks) with two between-plot factors (temperature and pCO2), and one within-plot factor (taxon); calcification was used as a dependent variable. pCO2 and temperature independently affected calcification, but the response differed between taxa. Massive Porites spp. was largely unaffected by the treatments, but P. rus grew 50% faster at 29.3 °C compared with 25.6 °C, and 28% slower at 81.5 Pa vs. 41.6 Pa CO2. A compilation of studies placed the present results in a broader context and tested the hypothesis that calcification for individual coral genera is independent of pH, [HCO3]-, and [CO3]2-. Unlike recent reviews, this analysis was restricted to studies reporting calcification in units that could be converted to nmol CaCO3/cm**2/h. The compilation revealed a high degree of variation in calcification as a function of pH, [HCO3]-, and [CO3]2-, and supported three conclusions: (1) studies of the effects of ocean acidification on corals need to pay closer attention to reducing variance in experimental outcomes to achieve stronger synthetic capacity, (2) coral genera respond in dissimilar ways to pH, [HCO3]-, and [CO3]2-, and (3) calcification of massive Porites spp. is relatively resistant to short exposures of increased pCO2, similar to that expected within 100 y.