511 resultados para Inductively coupled plasma etchings


Relevância:

100.00% 100.00%

Publicador:

Resumo:

As a part of the Russian-German project "Siberian River-Runoff (SIRRO)" the major element composition of the dissolved load and the major and trace element composition of particulate load and bottom sediment of the Yenisei River and Estuary were analyzed and examined in context of the basin lithology and climate. In addition, the processes controlling the transformation of the river load in the estuarine mixing zone were investigated. The chemical composition of the dissolved and particulate load of the Yenisei fluvial endmember is generally comparable to that of other major world rivers. The dissolved load is chiefly controlled by carbonate weathering and the chemical composition of the river suspended particulate matter (SPM) is similar to that of the North American Shale Composite (NASC), which represents the weathering product of the upper continental crust. The Chemical Index of Alteration (CIA) of the Yenisei SPM amounts to 71, which indicates moderate chemical weathering. With regard to the SPM geochemistry, the Yenisei occupies an intermediate position between the adjacent rivers Khatanga and the Lena. Drastic changes in the composition of the river load are seen in the mixing zone between fresh and salt water. While dissolved Na, Ca, Mg, K, CI, S04, F, Br, Sr and HC03 behave conservatively, dissolved Fe is completely removed from solution at very low salinities. Particulate Mn exhibits a pronounced mid-salinity minimum concomitant with a maximum of dissolved Mn, which is probably related to suboxic conditions in the area of the so-called "marginal filter", where highest turbidities are found. The Mn-minimum in SPM is paralleled by depletions of the elements Ba, Zn, Cd, Ni, Cu and V, which can be associated with manganese particles. The estuarine bottom sediments are composed of mud and sand and the sedimentological parameters of the bottom sediments have to be considered for the interpretation of the bulk geochemical data. The chemical composition of the mud is comparable to the SPM, whereas the sand is relatively enriched in Si/Al, Ba/Al, Zr/Al and Sr/Al ratios and depleted in transition metals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Geophysical surveys of the Mariana forearc, in an area equidistant from the Mariana Trench and the active Mariana Island Arc, revealed a 40-m-deep graben about 13 km northwest of Conical Seamount, a serpentine mud volcano. The graben and its bounding horst blocks are part of a fault zone that strikes northwest-southeast beneath Conical Seamount. One horst block was drilled during Leg 125 of the Ocean Drilling Program (Site 781). Three lithologic units were recovered at Site 781: an upper sedimentary unit, a middle basalt unit, and a lower sedimentary unit. The upper unit, between 0 and 72 mbsf, consists of upper Pliocene to Holocene diatomaceous and radiolarian-bearing silty clay that grades down into vitric silty clay and vitric clayey silt. The middle unit is a Pleistocene vesicular, porphyritic basalt, the top of which corresponds to a high-amplitude reflection on the reflection profiles. The lower unit is a middle to upper (and possibly some lower) Pliocene vitric silty clay and vitric clayey silt similar to the lower part of the upper unit. The thickness of the basalt unit can only be estimated to be between 13 and 25 m because of poor core recovery (28% to 55%). The absence of internal flow structures and the presence of an upper glassy chilled zone and a lower, fine-grained margin suggest that the basalt unit is either a single lava flow or a near-surface sill. The basalt consists of plagioclase phenocrysts with subordinate augite and olivine phenocrysts and of plagioclase-augite-olivine glomerocrysts in a groundmass of plagioclase, augite, olivine, and glass. The basalt is an island arc tholeiite enriched in large-ion-lithophile elements relative to high-field-strength elements, similar to the submarine lavas of the southern arc seamounts. In contrast, volcanic rocks from the active volcanoes on Pagan and Agrigan islands, 100 km to the west of the drill site, are calc-alkaline. The basalt layer, the youngest in-situ igneous layer reported from the Izu-Bonin and Mariana forearcs, is enigmatic because of its location more than 100 km from the active volcanic arc. The sediment layers above and below the basalt unit are late Pliocene in age (about 2.5 Ma) and normally magnetized. The basalt has schlierenlike structures, reverse magnetization, and a K-Ar age of 1.68±0.37 Ma. Thus, the basalt layer is probably a sill fed by magma intruded along a fault zone bounding the horst and graben in the forearc. The geochemistry of the basalt is consistent with a magma source similar to that of the active island arc and from a mantle source above the subducting Pacific plate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report results from boron, carbon and oxygen stable isotope analyses of faulted and veined rocks recovered by scientific ocean drilling during ODP Leg 180 in the western Woodlark Basin, off Papua New Guinea. In this area of active continental extension, crustal break-up and incipient seafloor spreading, a shallow-dipping, seismically active detachment fault accommodates strain, defining a zone of mylonites and cataclasites, vein formation and fluid infiltration. Syntectonic microstructures and vein-fill mineralogy suggest frictional heating during slip during extension and exhumation of Moresby Seamount. Low carbon and oxygen isotope ratios of calcite veins indicate precipitation from hydrothermal fluids (delta13C PDB down to -17?; delta18O PDB down to -22?) formed by both dehydration and decarbonation. Boron contents are low (<7 ppm), indicating high-grade metamorphic source rock for the fluids. Some of the delta11B signatures (17-35?; parent solutions to calcite vein fills) are low when compared to deep-seated waters in other tectonic environments, likely reflecting preferential loss of 11B during low-grade metamorphism at depth. Pervasive devolatilization and flux of CO2-rich fluids are evident from similar vein cement geochemistry in the detachment fault zone and splays further updip. Multiple rupture-and-healing history of the veins suggests that precipitation may be an important player in fluid pressure evolution and, hence, seismogenic fault movement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present sea surface and upper thermocline temperature records (60-100 yr temporal resolution) spanning Marine Isotope Stage 3 (~24-62 kyr BP) from IMAGES Core MD01-2378 (121°47.27'E and 13°04.95'S; 1783 m water depth) located in the outflow area of the Indonesian Throughflow within the Timor Sea. Stable isotopes and Mg/Ca of the near surface dwelling planktonic foraminifer Globigerinoides ruber (white) and the upper thermocline dwelling Pulleniatina obliquiloculata reveal rapid changes in the thermal structure of the upper ocean during Heinrich Events. Thermocline warming and increased delta18Oseawater (P. obliquiloculata record) during Heinrich Events 3, 4, and 5 reflect weakening of the relatively cool and fresh thermocline flow and reduced export of less saline water from the North Pacific and Indonesian Seas to the tropical Indian Ocean. Three main factors influenced Indonesian Throughflow variability during Marine Isotope Stage 3: (1) global slow-down in thermohaline circulation during Heinrich Events triggered by northern hemisphere cooling; (2) increased freshwater export from the Java Sea into the Indonesian Throughflow controlled by rising sea level from ~60 to 47 ka and (3) insolation related changes in Australasian monsoon with associated migration of hydrological fronts between Indian Ocean and Indonesian Throughflow derived water masses at ~46-40 ka.