498 resultados para Beryllium.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the African Humid Period (AHP), much of the modern hyperarid Saharan desert was vegetated and covered with numerous lakes. In marine sediments off northwestern Africa, the AHP is represented by markedly reduced siliciclastic sediment flux between ~ 12.3 and 5.5 ka. Changes in the origin of this terrigenous sediment fraction can be constrained by sediment chemistry and radiogenic isotope tracers. At Ocean Drilling Program (ODP) Site 658, Hole C (20°44.95'N, 18°34.85'W, 2263 mbsl), the neodymium (Nd) isotope composition of terrigenous detritus shows little variability throughout the last 25 kyr, indicating that the contributing geological terranes have not changed appreciably since the last glacial period. In contrast, there were large and abrupt changes in strontium (Sr) isotope ratios and chemical compositions associated with the AHP, during which 87Sr/86Sr ratios were markedly less radiogenic, and sediments show higher chemical indices of alteration. We show that sediment geochemical changes during the AHP cannot be attributed to changes in the source terranes, physical sorting, or intensity of chemical weathering. The low 87Sr/86Sr and high Sr concentrations of AHP-age samples also conflict with the interpretation of increased fine-grained, fluvially derived sediments. We propose that the most significant compositional changes at ODP 658C are due to the addition of an aluminosilicate component that has a highly altered major element signature but is enriched in soluble elements like Sr and magnesium (Mg) compared to aluminum (Al) and has low 87Sr/86Sr relative to local terrigenous source areas. We interpret these characteristics to reflect authigenic sediment supply from extensive North African paleolake basins that were prevalent during the AHP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spark source mass spectroscopy was used to analyze 61 elements in ten ferromanganese nodules found near Glenora in the Bay of Quinte at the eastern end of Lake Ontario. Most minor elements, including As, Pb, and Hg, have concentrations between 1-100 µg/g. F, S, Co, Zn, and La have concentrations in 100 µg/g range. Ba and Sr are present at levels of 1% and 0.1% respectively. Compared to similar measurements on nodules found in the Great Lakes and in other parts of the globe, values reported here are generally lower. Compared to their marine equivalents, lake nodules appear to be inferior scavengers of minor elements. Examination of all available data corroborates the postulate that marine biological material is an important source of minor elements found in oceanic nodules.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The usefulness of cosmogenic beryllium-10 (half life = 2.5 Ma) for studying the rates of accumulation of ferromanganese nodules is reported based on its measured depth distribution in the top 20 mm of these deposits. Accumulation rates have been obtained in the range of 1 to 4 mm/Ma, which are in good agreement with rates determined using the 230Th method on the same nodules. The use of 10Be offers promise in extending the dating to the outer few cm of the nodules. This contrasts with conventional methods using 230Th and 231Pa isotopes which, due to their comparatively short half lives, are limited to a few mm at the surface of the nodules. Detailed studies of 10Be in the manganese deposits coupled with other trace element analyses should prove valuable in understanding the processes of formation of these deposits and the chronology of events recorded by them.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Manganese nodules from the Campbell Plateau and Macquarie Ridge have been chemically analysed and their compositions compared with other Pacific nodules. No significant differences in composition are apparent. Foraminifera from nodule nucleii are late Tertiary or Quaternary, indicating the late geological formation of manganese nodules in this region. Nodule formation may be related to late Tertiary or Quaternary submarine volcanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Snow samples collected from hand-dug pits at two sites in Simcoe County, Ontario, Canada were analysed for major and trace elements using the clean lab methods established for polar ice. Potentially toxic, chalcophile elements are highly enriched in snow, relative to their natural abundance in crustal rocks, with enrichment factor (EF) values (calculated using Sc) in the range 107 to 1081 for Ag, As, Bi, Cd, Cu, Mo, Pb, Sb, Te, and Zn. Relative to M/Sc ratios in snow, water samples collected at two artesian flows in this area are significantly depleted in Ag, Al, Be, Bi, Cd, Cr, Cu, Ni, Pb, Sb, Tl, V, and Zn at both sites, and in Co, Th and Tl at one of the sites. The removal from the waters of these elements is presumably due to such processes as physical retention (filtration) of metal-bearing atmospheric aerosols by organic and mineral soil components as well as adsorption and surface complexation of ionic species onto organic, metal oxyhydroxide and clay mineral surfaces. In the case of Pb, the removal processes are so effective that apparently ''natural'' ratios of Pb to Sc are found in the groundwaters. Tritium measurements show that the groundwater at one of the sites is modern (ie not more than 30 years old) meaning that the inputs of Pb and other trace elements to the groundwaters may originally have been much higher than they are today; the M/Sc ratios measured in the groundwaters today, therefore, represent a conservative estimate of the extent of metal removal along the flow path. Lithogenic elements significantly enriched in the groundwaters at both sites include Ba, Ca, Li, Mg, Mn, Na, Rb, S, Si, Sr, and Ti. The abundance of these elements can largely be explained in terms of weathering of the dominant silicate (plagioclase, potassium feldspar, amphibole and biotite) and carbonate minerals (calcite, dolomite and ankerite) in the soils and sediments of the watershed. Arsenic, Mo, Te, and especially U are also highly enriched in the groundwaters, due to chemical weathering: these could easily be explained if there are small amounts of sulfides (As, Mo, Te) and apatite (U) in the soils of the source area. Elements neither significantly enriched nor depleted at both sites include Fe, Ga, Ge, and P.