678 resultados para leg thrombosis
Resumo:
The mineralogy of both bulk- and clay-sized fractions of samples from Sites 671, 672, and 674 of ODP Leg 110 was determined by X-ray diffraction. The major minerals include quartz, calcite, plagioclase feldspar, and the clay minerals smectite, illite, and kaolinite. The smectite is a dioctahedral montmorillonite and is derived primarily from degradation of volcanic ash. Percentage of smectite varies with sediment age; Miocene and Eocene sediments are the most smectite-rich. High smectite content tends to correlate with elevated porosity, presumably because of the ability of smectite clays to absorb significant amounts of interlayer water. Because of a change in physical properties, the decollement zone at Site 671 formed in sediments immediately subjacent to a section of smectite-rich, high-porosity, Miocene-age sediments. Sediments above the decollement at Site 671, as well as all sediments analyzed from Sites 672 and 674, contain nearly pure smectite characteristic of the alteration of volcanic ash. Within the decollement zone and underthrust sequence, however, the smectite contains up to 65% illite interlayers. Although the illite/smectite could be interpreted as detrital clay derived from South America, its absence in the sediments stratigraphically equivalent to the decollement and underthrust sequences at Sites 672 and 674 favors the interpretation that it originated by diagenetic alteration of pre-existing smectite similar to that in the overlying sediments. A significant percentage of the freshening of the pore waters observed in these zones could be due to the water released during smectite dehydration.
Resumo:
Visual-domain diffuse reflectance data collected aboard the JOIDES Resolution with the Minolta spectrometer CM-2002 during Ocean Drilling Program Leg 172 have been used to estimate successfully the carbonate content of sediments. Calibration equations were developed for each site and for each lithostratigraphic unit (or subunit at Site 1063) using multiple linear regression on raw as well as pretreated reflectance spectra (i.e., first-order derivation and squaring of raw reflectance spectra) for a total of 4141 direct carbonate measurements. The root-mean-square errors of 4% to 7% are within the range of previous estimates using diffuse reflectance data and are acceptable for the general extensive range of carbonate contents (i.e., 0-70 wt%) that characterize sedimentation at Leg 172 sites.
Resumo:
The main objectives of this study are (1) to characterize the spatial and temporal variations in organic matter deposited in upwelling and related sediments (manifest in the palynoclast and organic-walled microplankton assemblages) and (2) to relate these variations to paleoenvironmental changes. A total of 40 samples from Holes 679D, 680B, 681B, 684B, 686B, and 687B were analyzed. Without exception, amorphogen dominates the palynoclast assemblages overwhelmingly. Influx of terrestrial particulate organic matter to the marine realm was extremely low. Levels of amorphogen swamp other palynoclast categories, and little significance can be attached to any variations observed. Microplankton dominate the palynomorph assemblages, with variable levels of subordinate foraminiferal test linings. Miospores are rare and are absent in most samples. Foraminiferal test linings are particularly abundant in the shallowest samples, which may reflect low surface-water paleotemperatures. Cysts of heterotrophic peridiniacean dinoflagellates (P-cysts) dominate the microplankton assemblages, with variable levels of cysts of autotrophic gonyaulacacean dinoflagellates (G-cysts). Samples dominated by P-cysts are derived largely from laminated, unbioturbated units deposited under the influence of strong upwelling. A lower abundance of P-cysts in some samples is restricted to unlaminated, bioturbated units deposited under oxygenated conditions. We conclude that the ratio of P-cysts to G-cysts is a useful indicator of variable upwelling strength. Detailed study of the variations in the microplankton assemblages offers one the greatest potential for palynological characteriztion and understanding of the upwelling system.
Resumo:
The distributions of calcium carbonate, of amorphous silica, and of 21 chemical compounds and elements in sediments of Holes 515A, 515B, 516, 516F, 517, and 518 are highly nonuniform; they change depending on the sediment types, grain size, and mineral composition. The main source of the lithogenous elements (K, Li, Rb, Fe, Ti, Zr, Ni, Cr, Sn) is terrigenous matter of South America. These elements correlate well or at least satisfactorily with each other and with the sum of clay minerals. CaCO3, amorphous SiO2 and organic C form a second group, the main source of which is biota of the ocean. Zn, Cu, Ba, Mo, (V, Na) are a third group, which is supplied by both terrigenous and biogenic matter. Judging by the distribution of chemical elements and components in sediments of Site 515, this area of the Brazil Basin is characterized by the rather constant conditions of pelagic terrigenous sedimentation from upper Eocene till Holocene. Small changes in chemical composition of sediments throughout the section are linked mainly to the evolution of subaerial source provinces, changes in hydrodynamic regime, and fluctuations of the ocean level. The chemical composition of sediments from the Rio Grande Rise sites suggests the existence of three main stages of sedimentation in this area. The first stage is the initial period of sediment accumulation on basalts at the beginning of the Late Cretaceous. Then followed sedimentary conditions notable for their sharp changes in chemical composition and type. Beginning in the middle Eocene and persisting into the Holocene, stable conditions of sedimentation characterize a third stage, represented by the formation of approximately 700 m of nannofossil oozes of rather monotonous chemical composition.
Resumo:
Neogene calcareous nannofossils were examined from 10 holes at three sites cored during ODP Leg 105. Sediment recovered in Baffin Bay at Site 645 is virtually barren of calcareous nannofossils, with the exception of a sparse lower Miocene assemblage. Sites 646 and 647 in the Labrador Sea contain upper Miocene to Holocene sediments having numerous barren intervals. Upper Pleistocene fossil coccolithophorid floras in the Labrador Sea indicate alternations of cold subpolar with transitional (subpolar/subtropical) assemblages. Extreme variations in the abundance of Coccolithus pelagicus were observed at Sites 646 and 647. These variations are correlated with stable isotopic data to interpret oceanographic responses to warming and cooling trends. The climatic history indicated by the changes of these assemblages closely approximates the past climatic fluctuations recorded in other North Atlantic cores. One new taxon, Discoaster bergenii, is described.
Resumo:
High-resolution, multichannel seismic data collected across the Great Bahama Bank margin and the adjacent Straits of Florida indicate that the deposition of Neogene-Quaternary strata in this transect are controlled by two sedimentation mechanisms: (1) west-dipping layers of the platform margin, which are a product of sea-level-controlled, platform-derived downslope sedimentation; and (2) east- or north-dipping drift deposits in the basinal areas, which are deposited by ocean currents. These two sediment systems are active simultaneously and interfinger at the toe-of-slope. The prograding system consists of sigmoidal clinoforms that advanced the margin some 25 km into the Straits of Florida. The foresets of the clinoforms are approximately 600 m high with variable slope angles that steepen significantly in the Pleistocene section. The seismic facies of the prograding clinoforms on the slope is characterized by dominant, partly chaotic, cut-and-fill geometries caused by submarine canyons that are oriented downslope. In the basin axis, seismic geometries and facies document deposition from and by currents. Most impressive is an 800-m-thick drift deposit at the confluence of the Santaren Channel and the Straits of Florida. This "Santaren Drift" is slightly asymmetric, thinning to the north. The drift displays a highly coherent seismic facies characterized by a continuous succession of reflections, indicating very regular sedimentation. Leg 166 of the Ocean Drilling Program (ODP) drilled a transect of five deep holes between 2 and 30 km from the modern platform margin and retrieved the sediments from both the slope and basin systems. The Neogene slope sediments consist of peri-platform oozes intercalated with turbidites, whereas the basinal drift deposits consist of more homogeneous, fine-grained carbonates that were deposited without major hiatuses by the Florida Current starting at approximately 12.4 Ma. Sea-level fluctuations, which controlled the carbonate production on Great Bahama Bank by repeated exposure of the platform top, controlled lithologic alternations and hiatuses in sedimentation across the transect. Both sedimentary systems are contained in 17 seismic sequences that were identified in the Neogene-Quaternary section. Seismic sequence boundaries were identified based on geometric unconformities beneath the Great Bahama Bank. All the sequence boundaries could be traced across the entire transect into the Straits of Florida. Biostratigraphic age determinations of seismic reflections indicate that the seismic reflections of sequence boundaries have chronostratigraphic significance across both depositional environments.
Resumo:
Prior to the Deep Sea Drilling Project the composition of the oceanic crust could only be inferred from seismic-refraction and gravity data and the recovery of a wide variety of dredged rocks. Through the success of the Deep Sea Drilling Project, it is now clear that the top of oceanic Layer 2 usually consists of basalt. Several laboratory studies (e.g., Fox et al., 1972; Christensen and Shaw, 1970; Hyndman and Drury, 1976) have demonstrated that the seismic velocities of oceanic basalt are similar to velocities reported from refraction studies of Layer 2 and that the variability in Layer 2 velocities has many causes, the most important being fracturing and sea-floor alteration produced by the interaction of basalt and sea water (Christensen and Salisbury, 1973). To date, most reported measurements of velocities in oceanic basalts are from samples obtained from the main ocean basins. With the exception of an earlier study of velocities and related elastic properties of a suite of rocks from DSDP Sites 292, 293, 294, and 296 located in the Philippine Sea (Christensen et al., 1975; Fountain et al., 1975), elastic properties have not been determined for oceanic rocks from marginal basins. In this chapter compressional- and shear-wave velocities and elastic constants are reported at elevated confining pressures for basalt and volcanic breccias from Holes 447A, 448, and 448A.