975 resultados para age-depth chronology


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The upper branch of the Atlantic Meridional Overturning Circulation predominantly enters the Atlantic Ocean through the southeast, where the subtropical gyre is exposed to the influence of the Agulhas leakage (AL). To understand how the transfer of Indian Ocean waters via the AL affected the upper water column of this region, we have generated new proxy records of planktic foraminifera from a core on the central Walvis Ridge, on the eastern flank of the South Atlantic Gyre (SAG). We analyzed the isotopic composition of subsurface dweller Globigerinoides ruber sensu lato, and thermocline Globorotalia truncatulinoides sinistral, spanning the last five Pleistocene glacial-interglacial (G-IG) cycles. The former displays a response to obliquity, suggesting connection with high latitude forcing, and a warming tendency during each glacial termination, in response to the interhemispheric seesaw. The d18O difference between the two species, interpreted as a proxy for upper ocean stratification, reveals a remarkably regular sawtooth pattern, bound to G-IG cyclicity. It rises from interglacials until glacial terminations, with fast subsequent decrease, appearing to promptly respond to deglacial peaks of AL. Stratification, however, bears a different structure during the last cycle, being minimal at Last Glacial Maximum, and peaking at Termination I. We suggest this to be the result of the intensified glacial wind field over the SAG and/or of the invasion of the South Atlantic thermocline by Glacial North Atlantic Intermediate Waters. The d13C time series of the two species have similar G-IG pattern, whereas their difference is higher during interglacials. We propose that this may be the result of the alternation of intermediate water masses in different circulation modes, and of a regionally more efficient biological pump at times of high pCO2.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A strong oxygen-minimum zone (OMZ) currently exists along the California margin because of a combination of high surface-water productivity and poor intermediate-water ventilation. However, the strength of this OMZ may have been sensitive to late Quaternary ocean-circulation and productivity changes along the margin. Although sediment-lamination strength has been used to trace ocean-oxygenation changes in the past, oxygen levels on the open margin are not sufficiently low for laminations to form. In these regions, benthic foraminifera are highly sensitive monitors of OMZ strength, and their fossil assemblages can be used to reconstruct past fluctuations. Benthic foraminiferal assemblages from Ocean Drilling Program Site 1017, off Point Conception, exhibit major and rapid faunal oscillations in response to late Quaternary millennial-scale climate change (Dansgaard-Oeschger cycles) on the open central California margin. These faunal oscillations can be correlated to and are apparently synchronous with those reported from Santa Barbara Basin. Together they represent major fluctuations in the strength of the OMZ which were intimately associated with global climate change-weakening, perhaps disappearing, during cool periods and strengthening during warm periods. These rapid, major OMZ strength fluctuations were apparently widespread on the Northeast Pacific margin and must have influenced the evolution of margin biota and altered biogeochemical cycles with potential feedbacks to global climate change.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Miocene Climatic Optimum (MCO; ~16.9 to 14.7 Ma) provides an outstanding opportunity to investigate climate-carbon cycle dynamics during a geologically recent interval of global warmth. We present benthic stable oxygen (d18O) and carbon (d13C) isotope records (5-12 kyr time resolution) spanning the late early to middle Miocene interval (18 to 13 Ma) at Integrated Ocean Drilling Program (IODP) Site U1335 (eastern equatorial Pacific Ocean). The U1335 stable isotope series track the onset and development of the MCO as well as the transitional climatic phase culminating with global cooling and expansion of the East Antarctic ice-sheet at ~13.8 Ma. We integrate these new data with published stable isotope, geomagnetic polarity and X-ray fluorescence (XRF) scanner-derived carbonate records from IODP Sites U1335, U1336, U1337 and U1338 on a consistent, astronomically-tuned timescale. Benthic isotope and XRF scanner-derived CaCO3 records depict prominent 100 kyr variability with 400 kyr cyclicity additionally imprinted on d13C and CaCO3 records, pointing to a tight coupling between the marine carbon cycle and climate variations. Our inter-site comparison further indicates that the lysocline behaved in highly dynamic manner throughout the MCO, with >75% carbonate loss occurring at paleo-depths ranging from ~3.4 to ~4 km in the eastern equatorial Pacific Ocean. Carbonate dissolution maxima coincide with warm phases (d18O minima) and d13C decreases, implying that climate-carbon cycle feedbacks fundamentally differed from the late Pleistocene glacial-interglacial pattern, where dissolution maxima correspond to d13C maxima and d18O minima. Carbonate dissolution cycles during the MCO were, thus, more similar to Paleogene hyperthermal patterns.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Modeling studies predict that changes in radiocarbon (14C) reservoir ages of surface waters during the last deglacial episode will reflect changes in both atmospheric 14C concentration and ocean circulation including the Atlantic Meridional Overturning Circulation. Tests of these models require the availability of accurate 14C reservoir ages in well-dated late Quaternary time series. We here test two models using plateau-tuned 14C time series in multiple well-placed sediment core age-depth sequences throughout the lower latitudes of the Atlantic Ocean. 14C age plateau tuning in glacial and deglacial sequences provides accurate calendar year ages that differ by as much as 500-2500 years from those based on assumed global reservoir ages around 400 years. This study demonstrates increases in local Atlantic surface reservoir ages of up to 1000 years during the Last Glacial Maximum, ages that reflect stronger trades off Benguela and summer winds off southern Brazil. By contrast, surface water reservoir ages remained close to zero in the Cariaco Basin in the southern Caribbean due to lagoon-style isolation and persistently strong atmospheric CO2 exchange. Later, during the early deglacial (16 ka) reservoir ages decreased to a minimum of 170-420 14C years throughout the South Atlantic, likely in response to the rapid rise in atmospheric pCO2 and Antarctic temperatures occurring then. Changes in magnitude and geographic distribution of 14C reservoir ages of peak glacial and deglacial surface waters deviate from the results of Franke et al. (2008) but are generally consistent with those of the more advanced ocean circulation model of Butzin et al. (2012).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

At four sites in the central equatorial Pacific Ocean the flux of extraterrestrial 3He, determined using the excess 230Th profiling method, is 8 * 10**-13 cm**3 STP/cm**2/ka. This supply rate is constant to within 30%. At these same sites, however, the burial rate of 3He, determined using chronostratigraphic accumulation rates, varies by more than a factor of 3. The lowest burial rates, which occur north of the equator at 1°N, 139°W are lower than the global average rate of supply of extraterrestrial 3He by 20% and indicate that sediment winnowing may have occurred. The highest burial rates, which are recorded at the equator and at 2°S, are higher than the rate of supply of extraterrestrial 3He by 100%, and these provide evidence for sediment focusing. By analyzing several proxies measured in core PC72 sediments spanning the past 450 kyr we demonstrate that periods of maximum burial rates of 230Th, 3He, 10Be, Ti, and barite, with a maximum peak-to-trough amplitude of a factor of 6, take place systematically during glacial time. However, the ratio of any one proxy to another is constant to within 30% over the entire length of the records. Given that each proxy represents a different source (234U decay in seawater, interplanetary dust, upper atmosphere, continental dust, or upper ocean), our preferred interpretation for the covariation is that the climate-related changes in burial rates are driven by changes in sediment focusing.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The North American monsoon (NAM), an onshore wind shift occurring between July and September, has evolved in character during the Holocene largely due to changes in Northern Hemisphere insolation. Published paleoproxy and modeling studies suggest that prior to ~8000 cal years BP, the NAM affected a broader region than today, extending westward into the Mojave Desert of California. Holocene proxy SST records from the Gulf of California (GoC) and the adjacent Pacific provide constraints for this changing NAM climatology. Prior to ~8000 cal years BP, lower GoC SSTs would not have fueled northward surges of tropical moisture up the GoC, which presently contribute most of the monsoon precipitation to the western NAM region. During the early Holocene, the North Pacific High was further north and SSTs in the California Current off Baja California were warmer, allowing monsoonal moisture flow from the subtropical Pacific to take a more direct, northwesterly trajectory into an expanded area of the southwestern U.S. west of 114°W. A new upwelling record off southwest Baja California reveals that enhanced upwelling in the California Current beginning at ~7500 cal year BP may have triggered a change in NAM climatology, focusing the geographic expression of NAM in the southwest USA into its modern core region east of ~114°W, in Arizona and New Mexico. Holocene proxy precipitation records from the southwestern U.S. and northwestern Mexico, including lakes, vegetation/pollen, and caves are reviewed and found to be largely supportive of this hypothesis of changing Holocene NAM climatology.