550 resultados para Swath bathymetry
Resumo:
The sheet "Darß" of the Western Baltic sediment distribution map displays several features of the late- and postglacial sediments in the area between 54°00? and 54°30? northern latitude and 12°00? and 13°00? eastern longitude on a scale of 1: 100,000. The main map shows the surface deposits in this area. Special attention is given to a detailed presentation of the granulometric characteristics of the sandy sedimens which are prevailing here. For this purpose a new way of visualization of grain size data was developed. Six insets provide information on water depth, positions of the sampling sites, areal distribution of median and sorting of sands, depth of the till surface thickness of the late- and postglacial sediments on top of the uppermost till and the bathymetry.
Resumo:
During Leg ANT-XXIII/9 on the 31st March 2007 the German research vessel Polarstern mapped a significant bathymetric feature with its swath sonar system at the north-west margin of the Kerguelen Plateau. Due to the fact, that the feature was discovered just a month after the third IPY 2007/2008 has started, it was named after Graf Wilczek who, together with Carl Weyprecht, had promoted the first IPY. The undersea feature name proposal was officialy accepted by the GEBCO Sub-Committee on Undersea Feature Names (SCUFN) at its 20th meeting in late July and was added to the GEBCO Gazetteer of UFN (http://www.iho.shom.fr/COMMITTEES/GEBCO/SCUFN/scufn_intro.htm). ______________ Graf Hans Wilczek (Notation of the name from the book of Wilczek's daughter Elisabeth Kinsky- Wilczek). The Austrian naval hero Tegetthoff in 1871 planned an expedition to the southern hemisphere. The geophysicist G. Neumayer (1826-1909) already was selected as its chief scientist. Also the naval officer Carl Weyprecht (1838-1881) and the mountaineer Julius Payer (1841-1915) were to participate. Because of the sudden death of Tegettoff the project came to a halt and eventually was cancelled. By support of the well known geographer August Petermann (1822-1878) Weyprecht and Payer made a voyage into the Barents Sea which made them believe having seen the "open polar sea". An additional undertaking to confirm and to extend the find was obvious. At this stage of the affair count Hans Wilczek (1837-1922) got involved. He not only fostered a new expedition with a considerable sum of money, but he participated in commanding a support vessel to Novaya Zemlya. Wilczek managed to get home but the expedition vessel under Weyprecht's command became imprisoned in the pack for two years and at least had to be abandoned. After an adventurous trip back to civilisation Weyprecht changed his mind in what he considered the best way of polar research. Together with Wilczek in 1875 he started the promotion of international station-based polar exploration - the IPY was born. Wilczek guaranteed the constitution of an Austrian station on Novaya Zemlya and was ready to winter over there personally. Because of several political and other obstructions the beginning of the IPY was delayed till 1882. Wilczek's friend Weyprecht had passed away already. The command of the Austrian station, eventually erected on Jan Mayen, was given to Emil v. Wohlgemuth (1843-1896). Wilczek financed the main part of the Austrian IPY participation. Wilczek is described as honest and popular. On the one hand acquainted with the most prominent persons of his days, he respected everybody and had many relationships with scientists and artists. There is a kind of autobiography under the title: Hans Wilczek erzählt seinen Enkeln Erinnerungen aus seinem Leben (Hans Wilczek tells his grandchildren reminiscences from his life); edited by his daughter Elisabeth Kinsky-Wilczek, Graz 1933, 502 p. The book is available in an English version: Happy Retrospect - the Reminiscences of Count Wilczek 1837-1922, Bell and Sons, London 1934, 295 p.
Resumo:
We map the weekly position of the Antarctic Polar Front (PF) in the Southern Ocean over a 12-year period (2002-2014) using satellite sea surface temperature (SST) estimated from cloud-penetrating microwave radiometers. Our study advances previous efforts to map the PF using hydrographic and satellite data and provides a unique realization of the PF at weekly resolution across all longitudes. The mean path of the PF is asymmetric; its latitudinal position spans from 44 to 64° S along its circumpolar path. SST at the PF ranges from 0.6 to 6.9 °C, reflecting the large spread in latitudinal position. The average intensity of the front is 1.7 °C per 100 km, with intensity ranging from 1.4 to 2.3 °C per 100 km. Front intensity is significantly correlated with the depth of bottom topography, suggesting that the front intensifies over shallow bathymetry. Realizations of the PF are consistent with the corresponding surface expressions of the PF estimated using expendable bathythermograph data in the Drake Passage and Australian and African sectors. The climatological mean position of the PF is similar, though not identical, to previously published estimates. As the PF is a key indicator of physical circulation, surface nutrient concentration, and biogeography in the Southern Ocean, future studies of physical and biogeochemical oceanography in this region will benefit from the provided data set.
Resumo:
State-of-the-art process-based models have shown to be applicable to the simulation and prediction of coastal morphodynamics. On annual to decadal temporal scales, these models may show limitations in reproducing complex natural morphological evolution patterns, such as the movement of bars and tidal channels, e.g. the observed decadal migration of the Medem Channel in the Elbe Estuary, German Bight. Here a morphodynamic model is shown to simulate the hydrodynamics and sediment budgets of the domain to some extent, but fails to adequately reproduce the pronounced channel migration, due to the insufficient implementation of bank erosion processes. In order to allow for long-term simulations of the domain, a nudging method has been introduced to update the model-predicted bathymetries with observations. The model-predicted bathymetry is nudged towards true states in annual time steps. Sensitivity analysis of a user-defined correlation length scale, for the definition of the background error covariance matrix during the nudging procedure, suggests that the optimal error correlation length is similar to the grid cell size, here 80-90 m. Additionally, spatially heterogeneous correlation lengths produce more realistic channel depths than do spatially homogeneous correlation lengths. Consecutive application of the nudging method compensates for the (stand-alone) model prediction errors and corrects the channel migration pattern, with a Brier skill score of 0.78. The proposed nudging method in this study serves as an analytical approach to update model predictions towards a predefined 'true' state for the spatiotemporal interpolation of incomplete morphological data in long-term simulations.
Resumo:
A model is presented for hemipelagic siliciclastic and carbonate sedimentation during the last glacial-interglacial cycle in the Capricorn Channel, southern Great Barrier Reef (GBR). Stable isotope ratios, grainsize, carbonate content and mineralogy were analysed for seven cores in a depth transect from 166 to 2892 m below sea level (mbsl). Results show variations in the flux of terrigenous, neritic and pelagic sediments to the continental slope over the last sea level cycle. During the glacial lowstand terrigenous sediment influenced all the cores down to 2000 mbsl. The percentages of quartz and feldspar in the cores decreased with water depth, while the percentage of clay increased. X-ray diffraction analysis of the glacial lowstand clay mineralogy suggests that the siliciclastic sediment was primarily sourced from the Fitzroy River, which debouched directly into the northwest sector of the Capricorn Channel at this time. The cores also show a decrease in pelagic calcite and an increase in aragonite and high magnesium calcite (HMC) during the glacial. The influx of HMC and aragonite is most likely from reworking of coral reefs exposed on the continental shelf during the glacial, and also from HMC ooids precipitated at the head of the Capricorn Channel at this time. Mass accumulation rates (MARs) are high (13.5 g/cm**/kyr) during the glacial and peak at ~20 g/cm** 3/kyr in the early transgression (16-14 ka BP). MARs then decline with further sea level rise as the Fitzroy River mouth retreats from the edge of the continental shelf after 13.5 ka BP. MARs remain low (4 g/cm**3/kyr) throughout the Holocene highstand. Data for the Holocene highstand indicate there is a reduction in siliciclastic influx to the Capricorn Channel with little quartz and feldspar below 350 mbsl. However, fine-grained fluvial sediments, presumably from the Fitzroy River, were still accumulating on the mid slope down to 2000 mbsl. The proportion of pelagic calcite in the core tops increases with water depth, while HMC decreases, and is present only in trace amounts in cores below 1500 mbsl. The difference in the percentage of HMC in the deeper cores between the glacial and Holocene may reflect differences in supply or deepening of the HMC lysocline during the glacial. Sediment accumulation rates also vary between cores in the Capricorn Channel and do not show the expected exponential decrease with depth. This may be due to intermediate or deep water currents reworking the sediments. It is also possible that present bathymetry data are too sparse to detect the potential role that submarine channels may play in the distribution and accumulation of sediments. Comparison of the Capricorn Channel MARs with those for other mixed carbonate/siliciclastic provinces from the northeast margin of Australia indicates that peak MARs in the early transgression in the Capricorn Channel precede those from the central GBR and south of Fraser Island. The difference in the timing of the carbonate and siliciclastic MAR peaks along the northeast margin is primarily related to differences in the physiography and climate of the provinces. The only common trend in the MARs from the northeast margin of Australia is the near synchronicity of the carbonate and siliciclastic MAR peaks in individual sediment cores, which supports a coeval sedimentation model.
Resumo:
During the Equamarge II cruise (February 4 to March 21, 1988), on board the R. V. "Jean Charcot", 12.500 kms of continuous geophysical profiling have been recorded along three sectors of the Equatorial Atlantic. Two segments ofthe West African transform margin have been intensively surveyed off Guinea and off Ivory Coast and Ghana. The active Romanche fracture zone has been surveyed in details on a distance of about 100 kms. These data (multibeam bathymetry, continuous seismic profiling, magnetism and gravity) have been supplemented by 16 geological stations (dredging and coring). This report gives a synthetic review of the onboard analysis and allows to better understand the geological structures of the three surveyed areas.