493 resultados para Periglacial and glacial environments of Mars


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Changes in the strength of Atlantic meridional overturning circulation (AMOC) are known to have profound impacts on global climate. Coupled modelling studies have suggested that, on annual to multi-decadal time scales, a slowdown of AMOC causes a deepening of the thermocline in the tropical Atlantic. However, this process has been poorly constrained by sedimentary geochemical records. Here, we reconstruct surface (UK'37 Index) and thermocline (TEX86H) water temperatures from the Guinea Plateau Margin (Eastern tropical Atlantic) over the last two glacial-interglacial cycles (~ 192 kyr). These paleotemperature records show that periods of reduced AMOC, as indicated by the d13 C benthic foraminiferal record from the same core, coincide with a reduction in the near-surface vertical temperature gradient, demonstrating for the first time that AMOC-induced tropical Atlantic thermocline adjustment exists on longer, millennial time scales. Modelling results support the interpretation of the geochemical records and show that thermocline adjustment is particularly pronounced in the eastern tropical Atlantic. Thus, variations in AMOC strength appear to be an important driver of the thermocline structure in the tropical Atlantic from annual to multi-millennial time scales.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hole 633A was drilled in the southern part of Exuma Sound on the toe-of-slope of the southeastern part of Great Bahama Bank during ODP Leg 101. The top 55 m, collected as a suite of six approximately 9.5-m-long hydraulic piston cores, represents a Pliocene-Pleistocene sequence of periplatform carbonate ooze, a mixture of pelagic calcite (foraminifer and coccolith tests), some pelagic aragonite (pteropod tests), and bank-derived fine aragonite and magnesian calcite. A 1.6-m.y.-long hiatus was identified at 43.75 mbsf using calcareous nannofossil biostratigraphy and magnetostratigraphy. The 43.75-m-thick periplatform sequence above the hiatus is a complete late Pliocene-Quaternary record of the past 2.15 m.y. The d18O curve, primarily based on Globigerinoides sacculifera, clearly displays high-frequency/low-amplitude cycles during the early Pleistocene and low-frequency/high-amplitude cycles during the middle and late Pleistocene. Variations in aragonite content in the fine fraction of the periplatform ooze show a cyclic pattern throughout the Pleistocene, as previously observed in piston cores of the upper Pleistocene. These variations correlate well with the d18O record: high aragonite corresponds to light interglacial d18O values, and vice versa. Comparison of the d18O record and the aragonite curve helps to identify 23 interglacial and glacial oxygen-isotope stages, corresponding to 10.5 aragonite cycles (labeled A to K) commonly established during the middle and late Pleistocene (0.9 Ma-present). Strictly based on the aragonite curve, another 11 aragonite cycles, labeled L to V, were identified for the early Pleistocene (0.9 to 1.6 Ma). Mismatches between the d18O record and the aragonite curve occur mainly at some of the glacial-to-interglacial transitions, where aragonite increases usually lag behind d18O depletion. When one visually connects the minima on the Pleistocene aragonite curve, low-frequency (0.4 to 0.5 m.y.) supercycles seem to be superimposed on the high-frequency cycles. The timing of this supercycle roughly matches the timing of the Pleistocene carbonate preservation supercycles described in the Pacific, Indian, and Atlantic oceans. Mismatches between aragonite and d18O cycles are even more obvious for the late Pliocene (1.6 to 2.15 Ma). Irregular aragonite variations are observed for the late Pliocene, although after the onset of late Pleistocene-like glaciations in the North Atlantic Ocean 2.4 m.y. ago the d18O record has shown a mode of high-frequency/low-amplitude cycles. Initiation of climatically induced aragonite cycles occurs only at the Pliocene-Pleistocene transition, 1.6 m.y. ago. After that time, aragonite cycles are fully developed throughout the Quaternary. The 11-m-thick periplatform sequence below the hiatus represents a lower Pliocene interval between 3.75 and 4.45 Ma. The bottom half (4.25-4.45 Ma) has a fairly constant, high aragonite content (averaging 60%) and high sedimentation rates (28 m/m.y.) and corresponds to the end of the prolonged early Pliocene interglacial interval (4.1-5.0 Ma), established as a worldwide high sea-level stand. The second half (3.75-4.25 Ma), in which aragonite content decreases by successive steps, paralleled by a gradual 5180 enrichment in Globigerinoides sacculifera and low sedimentation rates (10 m/m.y), corresponds to the climatic deterioration established worldwide between 4.1 and 3.8 Ma, to a decrease of carbonate preservation observed in the equatorial Pacific Ocean, and to a global sea-level decline. Dolomite, a ubiquitous secondary component in the lower Pliocene, is interpreted as being authigenic and possibly related to diagenetic transformation of primary bank-derived fine magnesian calcite. Transformation of the primary mineralogical composition of the periplatform ooze was evidently minor, as the sediments have retained a detailed record of the Pliocene-Pleistocene climatic evolution. Clear evidence of diagenetic transformations in the periplatform ooze includes (1) the disappearance of magnesian calcite in the upper 20 m of Hole 633A, (2) the occurrence of calcite overgrowths on foraminiferal tests and microclasts at intermittent chalky core levels, and (3) the ubiquitous presence of authigenic dolomite in the lower Pliocene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Kap Mackenzie area on the outer coast of northeast Greenland was glaciated during the last glacial stage, and pre-Holocene shell material was brought to the area. Dating of marine shells indicates that deglaciation occurred in the earliest Holocene, before 10 800 cal. a BP. The marine limit is around 53 m a.s.l. In the wake of the deglaciation, a glaciomarine fauna characterized the area, but after c. one millennium a more species-rich marine fauna took over. This fauna included Mytilus edulis and Mysella sovaliki, which do not live in the region at present; the latter is new to the Holocene fauna of northeast Greenland. The oldest M. edulis sample is dated to c. 9500 cal. a BP, which is the earliest date for the species from the region and indicates that the Holocene thermal maximum began earlier in the region than previously documented. This is supported by driftwood dated to c. 9650 cal. a BP, which is the earliest driftwood date so far from northeastern Greenland and implies that the coastal area was at least partly free of sea ice in summer. As indicated by former studies, the Storegga tsunami hit the Kap Mackenzie area at c. 8100 cal. a BP. Loon Lake, at 18 m a.s.l., was isolated from the sea at c. 6200 cal. a BP, which is distinctly later than expected from existing relative sea-level curves for the region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper reports results of a study of clastic heavy mineral assemblages and geochemical features of some assemblages in several Permian-Mesozoic cherty and siliceous-clayey sequences of the Sikhote Alin Region. They are composed of pelagic and hemipelagic sediments of the Panthalassa (Paleopacific) Ocean. Four typical mineral assemblages and their environments are established. In one of the ocean segments, where the sedimentary cover formed during Late Paleozoic - Early Cretaceous, the Permian pelagic domain was characterized by the amphibole-pyroxene assemblage with heavy minerals derived from ophiolites. The Triassic-Jurassic stage was marked by development of the clinopyroxene assemblage with heavy minerals derived from intraplate alkaline volcanic complexes. Middle-Late Jurassic hemipelagic sediments host the zircon-clinopyroxene assemblage with greater role of continental environments and presence of volcanic products of the convergence zone. Another segment of the ocean accumulated red cherts and siliceous-clayey sediments during Jurassic - Early Cretaceous under influence of island-arc volcanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-resolution oxygen and carbon isotope stratigraphy is presented for Miocene to early Pliocene sequences at three DSDP sites from the Lord Howe Rise, southwest Pacific, at water depths ranging from 1,300 to 2,000 m. Site 588 is located in the warm subtropics (~26°S), whereas Sites 590 and 591 are positioned in transitional (northern temperate) water masses (~31°S). Benthic foraminiferal oxygen and carbon isotope analyses were conducted on all sites; planktonic foraminiferal isotope data were generated for Site 590 only. Sample resolution in these sequences is on the order of 50,000 yr. or better. The chronological framework employed in this study is based largely upon ages assigned to Neogene calcareous nannoplankton boundaries. The benthic oxygen isotope record exhibits several major features during the Neogene. During most of the early Miocene, delta18O values were relatively low, reaching minimum values in the late early Miocene (19.5 to 16.5 Ma), and recording the climax of Neogene warmth. This was followed by a major increase in benthic delta18O values between ~16.5 and 13.5 Ma, which is interpreted as representing major, permanent accumulation of the East Antarctic ice sheet and cooling of bottom waters. During the 3 m.y. 18O enrichment, surface waters at these middle latitudes warmed between 16 and 14.5 Ma. During the remainder of the middle and late Miocene, benthic delta18O values exhibit distinct fluctuations, but the average value remained unchanged. The isotopic data show two distinct episodes of climatic cooling close to the middle/late Miocene boundary. The earliest of these events occurred between 12.5 and 11.5 Ma in the latest middle Miocene. The second cooling event occurred from 11 to 9 Ma, and is marked by some of the highest delta18O values of the entire Miocene. This was followed by relative warmth during the middle part of the late Miocene. The latest Miocene and earliest Pliocene (6.2 to 4.5 Ma) were marked by relatively high delta18O values, indicating increased cooling and glaciation. During the middle Pliocene, at about 3.4 Ma, a 0.4 per mil increase in benthic delta18O documents a net increase in average global ice volume and cooling of bottom waters. During this interval of increased glaciation, surface waters warmed by 2-3°C in southern middle-latitude regions. During the late Pliocene, between 2.6 and 2.4 Ma, a further increase in delta18O occurred; this has been interpreted by previous workers as heralding the onset of Northern Hemisphere glaciation. Surface-water warming in the middle latitudes occurred in association with major high-latitude glacial increases in the early middle Miocene (16-14 Ma), middle Pliocene (-3.5 Ma), and late Pliocene (~2.4 Ma). These intervals were also marked by increases in the vertical temperature gradient in the open ocean. Intersite correlation is enhanced by using carbon isotope stratigraphy. The great similarity of the delta13C time-series records within and between ocean basins and with water depth clearly indicates that changes in oceanwide average delta13C of [HCO3]- in seawater dominated the records, rather than local effects. Broad changes in the Neogene delta13C record were caused largely by transfer of organic carbon between continental and oceanic reservoirs. These transfers were caused by marine transgressions and regressions on the continental margins. The dominant feature of Neogene delta13C stratigraphy is a broad late early to early middle Miocene increase of about lâ between ~19 and 14.5 Ma. This trend occurred contemporaneously with a period of maximum coastal onlap (transgression) and maximum Neogene climatic warmth. The delta13C trend terminated during the expansion of the Antarctic ice sheet and associated marine regression. The latest Miocene carbon isotope shift (of up to - 0.75 per mil) at 6.2 Ma is clearly recorded in all sites examined and was followed by relatively low values during the remainder of the Neogene. This shift was caused by a glacioeustatic sealevel lowering that exposed continental margins via regression and ultimately increased the flux of organic carbon to the deep sea. An increase in delta13C values during the early Pliocene (~5 to 4 Ma) resulted from marine transgression during a time of global warmth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The climate of Chilean Patagonia is strongly influenced by the southern westerlies, which control the amount and latitudinal distribution of precipitation in the southern Andes. In austral summer, the Southern Westerly Wind Belt (SWWB) is restricted to the high latitudes. It expands northward in winter, which results in a strong precipitation seasonality between 35 and 45°S. Here, we present a new precipitation seasonality proxy record from Quitralco fjord (46°S), where relatively small latitudinal shifts in the SWWB result in large changes in precipitation seasonality. Our 1400 yr record is based on sedimentological and geochemical data obtained on a sediment core collected in front of a small river that drains the Patagonian Andes, which makes this site particularly sensitive to changes in river discharge. Our results show Fe/Al and Ti/Al values that are low between 600 and 1200 CE, increasing at 1200-1500 CE, and high between 1500 and 1950 CE. The increasing Fe/Al and Ti/Al values reflect a decrease in mean sediment grain-size from 30 to 20 µm, which is interpreted as a decrease in seasonal floods resulting from an equatorward shift of the SWWB. Our results suggest that, compared to present-day conditions, the SWWB was located in a more poleward position before 1200 CE. It gradually shifted towards the equator in 1200-1500 CE, where it remained in a sustained position until 1950 CE. The comparison of our record with published regional sea surface temperature (SST) reconstructions for the late Holocene shows that equatorward shifts in the SWWB are systematically coeval with decreasing SSTs and vice versa, which resembles fluctuations over glacial-interglacial timescales. We argue that the synchronicity between SST and SWWB changes during the last 1400 years represents the response of the SWWB to temperature changes in the Southern Hemisphere.