526 resultados para Per unit length
Resumo:
Total concentrations of algal pigments, organic C, C, N, P and S were determined in surface sediments from the littoral zone of 21 lakes in ice-free areas of northern Victoria Land (Antarctica) with different climatic and environmental conditions. Concentrations of major ions and nutrients were also determined in water samples from the same lakes. The latter samples had extremely variable chemical compositions; however, all the lakes resulted oligotrophic. Pigment concentrations in surface sediments were comparable to those reported for other Antarctic lakes and lower than those in oligotrophic lakes at lower latitudes. Cyanophyta, Chlorophyta and Bacillariophyta were the main taxa identified. These taxa correspond to those reported in previous microscopy-based studies on Antarctic phytoplankton and phytobenthos. Discriminant Function Analysis and Canonical Correspondence Analysis of data indicate that the distribution of pigments in these Victoria Land lakes depends mainly on their geographical location (particularly the distance from the sea) and nutrient status.
Resumo:
Organic geochemical data of Lower Cretaceous shallow water sediments from two sites (865 and 866) drilled during ODP leg 143 are presented. The organic matter is mainly terrestrial at the bottom of the sedimentary column at site 865, whereas algal and/or bacterial organic matter is dominant at site 866. This is the first evidence of shallow water deposition of organic matter during the Early Cretaceous in the Northwestern Pacific. The lower Aptian organic carbon-rich layers from the shallow water sediments of site 866 are geochemically similar to coeval mid-water sediments of site 463.
Resumo:
The lipids of a Pliocene and a Cretaceous sample from Site 462 were analyzed to assess their source and diagenetic history. Judging from the distributions of the n-alkanes, n-fatty acids, n-alkylcyclohexanes and molecular markers, they are autochthonous, of marine origin, and deposited under oxic paleoenvironmental conditions of sedimentation. The stereochemistry of the various molecular markers (e.g., triterpanes and steranes) of the Pliocene sample indicates that the lipids are geologically mature. This supports the hypothesis of sediment recycling from older formations by turbidite redistribution into the Nauru Basin
Resumo:
Organic matter in Miocene glacial sediments in Hole 739C on the Antarctic Shelf represents erosional recycled continental material. Various indications of maturity in bulk organic matter, kerogens, and extracts imply that an exposed section of mature organic carbon-rich material was present during the Miocene. Based on biomarker, n-alkane, and kerogen analysis, a massive diamictite of early Eocene/Oligocene age at Hole 739C contains immature organic matter. Visual and pyrolysis analyses of the kerogens suggest a predominance of terrestrial organic matter in all samples from Hole 739C. A reversal of thermal maturities, i.e., more-mature overlying less-mature sections, may be related to redeposition generated from glacial erosion. Siliciclastic fluviatile sediments of Lower Cretaceous age from Hole 741A were analyzed. The organic matter from this hole contains immature aliphatic and aromatic biomarkers as well as a suite of odd carbon number-dominated nalkanes. Visual examination and pyrolysis analysis of the kerogen suggests that predominantly immature terrestrial organic matter is present at Hole 741A. The similarities between Hole 739C Unit V and Hole 741A suggest that the source of the organic matter in the glacial sediments in Unit V at Hole 739C could be Cretaceous in age and similar to sediments sampled at Hole 741A in Prydz Bay.
Resumo:
Diamond dust (DD) refers to tiny ice crystals that form frequently in the Polar troposphere under clear sky conditions. They provide surfaces for chemical reactions and scatter light. We have measured the specific surface area (SSA) of DD at Barrow in March-April 2009. We have also measured its chemical composition in mineral and organic ions, dissolved organic carbon (DOC), aldehydes, H2O2, and the absorption spectra of water-soluble chromophores. Mercury concentrations were also measured in spring 2006, when conditions were similar. The SSA of DD ranges from 79.9 to 223 m**2/kg . The calculated ice surface area in the atmosphere reaches 11000 (±70%) µm**2/cm**3, much higher than the aerosol surface area. However, the impact of DD on the downwelling and upwelling light fluxes in the UV and visible is negligible. The composition of DD is markedly different from that of snow on the surface. Its concentrations in mineral ions are much lower, and its overall composition is acidic. Its concentrations in aldehydes, DOC, H2O2 and mercury are much higher than in surface snows. Our interpretation is that DOC from the oceanic surface microlayer, coming from open leads in the ice off of Barrow, is taken up by DD. Active chemistry in the atmosphere takes place on DD crystal surfaces, explaining its high concentrations in aldehydes and mercury. After deposition, active photochemistry modifies DD composition, as seen from the modifications in its absorption spectra and aldehyde and H2O2 content. This probably leads to the emissions of reactive species to the atmosphere.
Resumo:
Antarctic ice-free areas contain lakes and ponds that have interesting limnological features and are of wide global significance as early warning indicators of climatic and environmental change. However, most limnological and paleolimnological studies in continental Antarctica are limited to certain regions. There are several ice-free areas in Victoria Land that have not yet been studied well. There is therefore a need to extend limnological studies in space and time to understand how different geological and climatic features affect the composition and biological activity of freshwater communities. With the aim of contributing to a better limnological characterization of Victoria Land, this paper reports data on sedimentary pigments (used to identify the main algal taxa) obtained through a methodology that is more sensitive and selective than that of previous studies. Analyses were extended to 48 water bodies in ice-free areas with differing lithology, latitude, and altitude, and with different morphometry and physical, chemical, and biological characteristics in order to identify environmental factors affecting the distribution and composition of freshwater autotrophic communities. A wider knowledge of lakes in a limnologically important region of Antarctica was obtained. Cyanophyta was found to be the most important algal group, followed by Chlorophyta and Bacillariophyta, whereas latitude and altitude are the main factors affecting pigment distribution.
Resumo:
In this study we present a late Miocene - early Pliocene record of sixty-four zones with prominent losses in the magnetic susceptibility signal, taken on a sediment drift (ODP Site 1095) on the Pacific continental rise of the West Antarctic Peninsula. The zones are comparable in shape and magnitude and occur commonly at glacial-to-interglacial transitions. High resolution records of organic matter, magnetic susceptibility and clay mineral composition from early Pliocene intervals demonstrate that neither dilution effects nor provenance changes of the sediments have caused the magnetic susceptibility losses. Instead, reductive dissolution of magnetite under suboxic conditions seems to be the most likely explanation. We propose that during the deglaciation exceptionally high organic fluxes in combination with weak bottom water currents and prominent sediment draping diatom ooze layers produced temporary suboxic conditions in the uppermost sediments. It is remarkable that synsedimentary suboxic conditions can be observed in one of the best ventilated open ocean regions of the World.
Resumo:
Methane (CH4) is a strong greenhouse gas known to have perturbed global climate in the past, especially when released in large quantities over short time periods from continental or marine sources. It is therefore crucial to understand and, if possible, quantify the individual and combined response of these variable methane sources to natural climate variability. However, past changes in the stability of greenhouse gas reservoirs remain uncertain and poorly constrained by geological evidence. Here, we present a record from the Congo fan of a highly specific bacteriohopanepolyol (BHP) biomarker for aerobic methane oxidation (AMO), 35-aminobacteriohopane-30,31,32,33,34-pentol (aminopentol), that identifies discrete periods of increased AMO as far back as 1.2 Ma. Fluctuations in the concentration of aminopentol, and other 35-aminoBHPs, follow a pattern that correlates with late Quaternary glacial-interglacial climate cycles, with highest concentrations during warm periods. We discuss possible sources of aminopentol, and the methane consumed by the precursor methanotrophs, within the context of the Congo River setting, including supply of methane oxidation markers from terrestrial watersheds and/or marine sources (gas hydrate and/or deep subsurface gas reservoir). Compound-specific carbon isotope values of -30 per mil to -40 per mil for BHPs in ODP 1075 and strong similarities between the BHP signature of the core and surface sediments from the Congo estuary and floodplain wetlands from the interior of the Congo River Basin, support a methanotrophic and likely terrigenous origin of the 35-aminoBHPs found in the fan sediments. This new evidence supports a causal connection between marine sediment BHP records of tropical deep sea fans and wetland settings in the feeding river catchments, and thus tropical continental hydrology. Further research is needed to better constrain the different sources and pathways of methane emission. However, this study identifies the large potential of aminoBHPs, in particular aminopentol, to trace and, once better calibrated and understood, quantify past methane sources and fluxes from terrestrial and potentially also marine sources.
Resumo:
The organic geochemical character of rocks selected from Aptian, Valanginian, and Berriasian clay stone and siltstone sequences encountered in Ocean Drilling Program (ODP) Holes 762C and 763C on the Exmouth Plateau was determined by means of a variety of analytical procedures. These sequences represent distal portions of the Mesozoic Barrow delta, in which petroleum source rocks and reservoirs exist on the Australian continent. The organic matter at the ODP sites is thermally immature type III material. Biomarker hydrocarbon compositions are dominated by long-chain, waxy n-alkanes and by C29 steranes, which reflect the land-plant origin of organic matter. Organic carbon d13C values ranged from -26 per mil to -28 per mil, consistent with a C3 land-plant source. Kerogen pyrolysate compositions and hopane isomerization ratios revealed progressively larger contributions of recycled organic matter as the depth of the deltaic sedimentary layers became greater.