491 resultados para 198-1211A


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A relatively complete lower Paleocene to lower Oligocene sequence was recovered from the Southern High of Shatsky Rise at Sites 1209, 1210, and 1211. The sequence consists of nannofossil ooze and clay-rich nannofossil ooze. Samples from these sites have been the target of intensive calcareous nannofossil biostratigraphic investigations. Calcareous nannofossils are moderately preserved in most of the recovered sequence, which extends from nannofossil Zones CP1 to CP16. Most traditional zonal markers are present; however, the rarity and poor preservation of key species in the uppermost Paleocene and lower Eocene inhibits zonal subdivision of part of this sequence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A pulse of intense carbonate dissolution occurred during the early late Paleocene at 58.4 Ma. A prominent 5 to 25 cm-thick dark brown clay-rich calcareous nannofossil ooze was found on Shatsky Rise at Sites 1209, 1210, 1211, and 1212 during Ocean Drilling Program Leg 198. The layer corresponds to the lower part of planktonic foraminiferal Zone P4 and coincides with the evolutionary first occurrence of the nannolith Heliolithus kleinpellii, an important component of late Paleocene assemblages and a marker for the base of Zone CP5. The clay-rich layer contains common crystals of phillipsite, fish teeth, and phosphatic micronodules and corresponds to a prominent peak in magnetic susceptibility that probably reflects these high amounts of detrital and authigenic materials. Detailed quantitative analysis of planktonic foraminiferal assemblages across the clay-rich nannofossil ooze layer shows that fundamental changes in faunal composition occurred before, during, and after deposition of the clay-rich ooze. Planktonic foraminifers in the clay-rich layer are characterized by a low-diversity, largely dissolved assemblage dominated by representatives of the genus Igorina (mainly Igorina tadjikistanensis and Igorina pusilla). Conversely, Igorina albeari, morozovellids, acarininids, globanomalinids, subbotinids, and chiloguembelinids are common below the clay-rich layer, almost disappear within it, and reappear in low abundances above the clay-rich layer. These changes in faunal compositions are likely a response to a change in carbonate saturation that caused increased dissolution on the seafloor owing to the shoaling of the lysocline and the carbonate compensation depth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Paleocene/Eocene Thermal Maximum (PETM) was a transient interval of global warming ~55 m.y. ago associated with transformation of ecosystems and changes in carbon cycling. The event was caused by the input of massive amounts of CO2 or CH4 to the ocean-atmosphere system. Rapid shoaling of the lysocline and calcite compensation depth (CCD) is a predicted response of CO2 or CH4 input; however, the extent of this shoaling is poorly constrained. Investigation of Ocean Drilling Program (ODP) Sites 1209-1212 at Shatsky Rise, which lies along a depth transect, suggests a minimum lysocline shoaling of ~500 m in the tropical Pacific Ocean during the PETM. The sites also show evidence of CaCO3 dissolution within the sediment column, carbonate "burn-down" below the level of the carbon isotope excursion, and a predicted response to a rapid change in deepwater carbonate saturation. Close examination of several foraminiferal preservation proxies (i.e., fragmentation, benthic/planktonic foraminiferal ratios, coarse fraction, and CaCO3 content) and observations of foraminifers reveal that increased fragmentation levels most reliably predict intervals with visually impoverished foraminiferal preservation as a result of dissolution. Low CaCO3 content and high benthic/planktonic ratios also mirror intervals of poorest preservation.