478 resultados para 126-789
Resumo:
A compilation of 1118 surface sediment samples from the South Atlantic was used to map modern seafloor distribution of organic carbon content in this ocean basin. Using new data on Holocene sedimentation rates, we estimated the annual organic carbon accumulation in the pelagic realm (>3000 m water depth) to be approximately 1.8*10**12 g C/year. In the sediments underlying the divergence zone in the Eastern Equatorial Atlantic (EEA), only small amounts of organic carbon accumulate in spite of the high surface water productivity observed in that area. This implies that in the Eastern Equatorial Atlantic, organic carbon accumulation is strongly reduced by efficient degradation of organic matter prior to its burial. During the Last Glacial Maximum (LGM), accumulation of organic carbon was higher than during the mid-Holocene along the continental margins of Africa and South America (Brazil) as well as in the equatorial region. In the Eastern Equatorial Atlantic in particular, large relative differences between LGM and mid-Holocene accumulation rates are found. This is probably to a great extent due to better preservation of organic matter related to changes in bottom water circulation and not just a result of strongly enhanced export productivity during the glacial period. On average, a two- to three-fold increase in organic carbon accumulation during the LGM compared to mid-Holocene conditions can be deduced from our cores. However, for the deep-sea sediments this cannot be solely attributed to a glacial productivity increase, as changes in South Atlantic deep-water circulation seem to result in better organic carbon preservation during the LGM.
Resumo:
During the austral summer expedition PS81, ANT-XXIX/3 with the German research ice breaker Polarstern in 2013, research was carried out to investigate the role of environmental factors on the distribution of benthic communities and marine mammal and krill densities around the northern tip of the Antarctic Peninsula. For these studies collated in this special issue and studies in this area, we present a collection of environmental parameters with probable influence on the marine ecosystems around the Antarctic Peninsula.
Resumo:
A detailed description of the ores of Lake Storsjoen was given by Vogt J. H. L., 1915 who pointed out that the ores may be divided into two principal types; first, iron ore with 2% or less of manganese (ex: Ertemalm), and, second, ores with manganese contents of up to 30% (ex: Korinter). The iron-rich ore sometimes occurs as a conglomerate embedded in manganese-rich ores, clearly demonstrating that two distinctly different precipitates are involved. In the iron-rich ore, a concentric structure is common of which light brown layers of loose, almost dusty material alternate with hard and brittle black layers, the thickness of each being 0.5 mm or less. The analyses presented in this paper seem to demonstrate that the composition of the sedimentary ores of Lake Storsjden could result from fluctuations in the composition of ground waters feeding the lake.
Resumo:
The Ocean Drilling Program Leg 126 sites may be classified into two categories depending on the presence (Group I: Sites 787, 792, and 793) or absence (Group II: Sites 788, 790, and 791) of steep concentration gradients. Shipboard X-ray diffraction analyses of bulk sediments from Group I sites revealed the presence of a number of diagenetic minerals (some of which are incompatible), but no systematic diagenetic zonation. The results of the chemical analyses of the pore waters from Group I have been used to estimate the activities of dissolved species. Thermodynamic analyses of the composition of the pore waters and the stability of authigenic minerals (gypsum, zeolites, feldspars, smectites, chlorites, and micas) show that the pore waters are close to equilibrium with most of the observed phases. Thus, only a small perturbation of the system (substitution in minerals and fluctuations in pore-water composition, in particular, in pH and SiO2 activity) will cause any of these phases to precipitate. Therefore, one would not expect mineralogical observations to show systematic vertical zonations at these sites. It is suggested that chlorites and high-temperature zeolites are not diagenetic sensu stricto, but were eroded from volcaniclastic highs. The absence of concentration gradients at the Group II sites has been analyzed in terms of reaction kinetics, hydrothermal advection, and temperature distribution. The absence of diagenetic imprints on the pore-water concentration profiles at these sites is probably caused by the slow nucleation of silica phases.
Resumo:
Sediments and rocks recovered during Ocean Drilling Program Leg 126 at Sites 792 and 793 in the Izu-Bonin forearc basin are described with a primary focus on clay mineralogy. Evidence for diagenetic hydrothermal alteration processes is present in the upper Oligocene to lower Miocene sediments at these sites. The vitric and pumiceous sand/sandstone and pumiceous gravel contain high concentrations of smectites, zeolites, and gypsum. Microscopic observations show that the volcanic glass and feldspars have been altered to smectites and zeolites. The authigenic mineral assemblages indicate that these minerals resulted from precipitation from circulating fluids, as well as from the alteration of glass and feldspar under temperature conditions that may have reached 200°-300°C. Mineral assemblages in microfractures display thermal gradients that possibly reflect cooling effects.