487 resultados para 104-644
Resumo:
Subaerially erupted tholeiites at Hole 642E were never exposed to the high-temperature seawater circulation and alteration conditions that are found at subaqueous ridges. Alteration of Site 642 rocks is therefore the product of the interaction of rocks and fluids at low temperatures. The alteration mineralogy can thus be used to provide information on the geochemical effects of low temperature circulation of seawater. Rubidium-strontium systematics of leached and unleached tholeiites and underlying, continentally-derived dacites reflect interactions with seawater in fractures and vesicular flow tops. The secondary mineral assemblage in the tholeiites consists mainly of smectite, accompanied in a few flows by the assemblage celadonite + calcite (+/- native Cu). Textural relationships suggest that smectites formed early and that celadonite + calcite, which are at least in part cogenetic, formed later than and partially at the expense of smectite. Smectite precipitation occurred under variable, but generally low, water/rock conditions. The smectites contain much lower concentrations of alkali elements than has been reported in seafloor basalts, and sequentially leached fractions of smectite contain Sr that has not achieved isotopic equilibrium. 87Sr/86Sr results of the leaching experiments suggest that Sr was mostly derived from seawater during early periods of smectite precipitation. The basalt-like 87Sr/86Sr of the most readily exchangeable fraction seems to suggest a late period of exposure to very low water /rock. Smectite formation may have primarily occurred in the interval between the nearly 58-Ma age given by the lower series dacites and the 54.5 +/- 0.2 Ma model age given by a celadonite from the top of the tholeiitic section. The 54.5 +/- 0.2 Ma Rb-Sr model age may be recording the timing of foundering of the Voring Plateau. Celadonites precipitated in flows below the top of the tholeiitic section define a Rb-Sr isochron with a slope corresponding to an age of 24.3 +/- 0.4 Ma. This isochron may be reflecting mixing effects due to long-term chemical interaction between seawater and basalts, in which case the age provides only a minimum for the timing of late alteration. Alternatively, inferrential arguments can be made that the 24.3 +/- 0.4 isochron age reflects the timing of the late Oligocene-early Miocene erosional event that affected the Norwegian-Greenland Sea. Correlation of 87Sr/86Sr and 1/Sr in calcites results in a two-component mixing model for late alteration products. One end-member of the mixing trend is Eocene or younger seawater. Strontium from the nonradiogenic endmember can not, however, have been derived directly from the basalts. Rather, the data suggest that Sr in the calcites is a mixture of Sr derived from seawater and from pre-existing smectites. For Site 642, the reaction involved can be generalized as smectite + seawater ++ celadonite + calcite. The geochemical effects of this reaction include net gains of K and CO2 by the secondary mineral assemblage. The gross similarity of the reactions involved in late, low-temperature alteration at Site 642 to those observed in other sea floor basalts suggests that the transfer of K and C02 to the crust during low-temperature seawater-ocean crust interactions may be significant in calculations of global fluxes.
Resumo:
Records of biogenic and terrigenous components have been obtained from the interval corresponding to the last 2.6 m.y. of ODP Sites 643 and 644 in order to reconstruct surface and deep water regimes in the Norwegian Sea. Surface water regimes record long lasting moderate glacial conditions during the interval 2.6 1.0 Ma. Small intrusions of Atlantic water episodically penetrated into the Norwegian Sea forming a narrow tongue along the eastern margin, which is documented at Site 644. The polar front was most probably situated between the Site 644 and 643 locations on the outer Voring Plateau during these time intervals. Deep water regimes reflect long-term persistent corrosive bottom waters, most probably due to a weakly undersaturated water column and a low rate of carbonate shell production in surface waters. Deep water production in the Norwegian-Greenland Sea may have operated in a different way, e.g. brine formation during winter sea ice growth. Bottom waters were oxygenated throughout the entire period, and deep water was exchanged persistently with the North Atlantic. Increased glacial/interglacial enviromental contrasts are documented, reflecting a strengthening of the Norwegian Current and intensified glaciations on the surrounding land masses during the interval 1.0 0.6 Ma. During this time a major shift in the mode of deep water production occurred. Tile onset of large amplitudes in glacial/interglacial environmental conditions with maximum contrasts in surface water regimes, different modes of deep water production, and intensified exchange with the North Atlantic marks the last 0.6 Ma. A broad development of the Norwegian Current is observed during peak interglacials, while during glacials seasonally variable sea ice cover and iceberg drift dominate surface water conditions.
Resumo:
Continuous sediment sections spanning the last 2.8 Ma have been studied using stable isotope stratigraphy and sedimentological methods. By using paleomagnetic reversals as a chronostratigraphic tool, climatic and paleoceanographic changes have been placed in a time framework. The results show that the major expansion of the Scandinavian Ice Sheet to the coastal areas occurred in the late Neogene period at about 2.8 Ma. Relatively high-amplitude glacials appeared until about 2 Ma. The period between 2.8 and 1.2 Ma was marked by cold surface water conditions with only weak influx of temperate Atlantic water as compared with late Quaternary interglacials. During this period, climatic variations were smaller in amplitude than in the late Quaternary. The Norwegian Sea was a sink of deep water throughout the studied period but deep water ventilation was reduced and calcite dissolution was high compared with the Holocene. Deep water formed by other processes than today. Between 2 and 1.2 Ma, glaciations in Scandinavia were relatively small. A transition toward larger glacials took place during the period 1.2 to 0.6 Ma, corresponding with warmer interglacials and increasing influx of temperate surface water during interglacials. A strong thermal gradient was present between the Norwegian Sea and the northeastern Atlantic during the Matuyama (2.5-0.7 Ma). This is interpreted as a sign of a more zonal and less meridional climatic system over the region as compared with the present situation. The transition towards more meridionality took place over several hundred thousand yr. Only during the last 0.6 Ma has the oceanographic and climatic system of the Norwegian Sea varied in the manner described from previous studies of the late Quaternary.
Resumo:
The Pliocene (5.3-2.6 Ma) is often described as a relatively stable climatic period, with warm temperatures characterizing high latitudes. New suborbital resolved stable isotope records from ODP Hole 642B in the Eastern Nordic Seas document that the Pliocene was not a stable period characterized by one climate. Rather, seven distinct climate phases, each lasting between 150,000 and 400,000 years, are identified and characterized in the time interval 5.1-3.1 Ma. Four of the transitions between the defined climate phases occurred close to an eccentricity minimum and a minimum in amplitude of change for Northern Hemisphere summer insolation, while two occurred around an eccentricity maximum and a maximum in amplitude in insolation change. Hence, a low frequency response of the Nordic Seas to insolation forcing is indicated. In addition, paleogeographic and related paleoceanographic changes, expansion of the Arctic sea ice cover and onset of NHG were important factors behind the evolving Pliocene low frequency variability in the eastern Nordic Seas. It is likely that the identified climate phases and transitions are important beyond the Nordic Seas, due to their association with changes to both insolation and paleogeography. Also, a strong and variable degree of diagenetic calcite overgrowth is documented for the planktic foraminifera, especially influencing the planktic d18O results; the absolute values and amplitude of change cannot be taken at face value.