998 resultados para 1 std dev
Resumo:
Selected multi-proxy and accurately dated marine and terrestrial records covering the past 2000 years in the Iberian Peninsula (IP) facilitated a comprehensive regional paleoclimate reconstruction for the Medieval Climate Anomaly (MCA: 900-1300 AD). The sequences enabled an integrated approach to land-sea comparisons and, despite local differences and some minor chronological inconsistencies, presented clear evidence that the MCA was a dry period in the Mediterranean IP. It was a period characterized by decreased lake levels, more xerophytic and heliophytic vegetation, a low frequency of floods, major Saharan eolian fluxes, and less fluvial input to marine basins. In contrast, reconstruction based on sequences from the Atlantic Ocean side of the peninsula indicated increased humidity. The data highlight the unique characteristics of the MCA relative to earlier (the Dark Ages, DA: ca. 500-900 years AD) and subsequent (the Little Ice Age, LIA: 1300-1850 years AD) colder periods. The reconstruction supports the hypothesis of Trouet et al. (2009, doi:10.1126/science.1166349), that a persistent positive mode of the North Atlantic Oscillation (NAO) dominated the MCA.
Resumo:
Ice-wedge polygon (IWP) mires in the Arctic and Subarctic are extremely vulnerable to climatic and environmental change. We present the results of a multidisciplinary paleoenvironmental study on IWPs in the northern Yukon, Canada. High-resolution laboratory analyses were carried out on a permafrost core and the overlying seasonally thawed (active) layer, from a low-centered IWP located in a drained lake basin on Herschel Island. In relation to 14 Accelerator Mass Spectrometry (AMS) radiocarbon dates spanning the last 5000 years, we report sedimentary data including grain size distribution and biogeochemical parameters (organic carbon, nitrogen, C/N ratio, d13C), stable water isotopes (d18O, dD), as well as fossil pollen, plant macrofossil and diatom assemblages. Three sediment units (SUs) correspond to the main stages of deposition (1) in a thermokarst lake (SU1: 4950 to 3950 cal yrs BP), (2) during transition from lacustrine to palustrine conditions after lake drainage (SU2: 3950 to 3120 cal yrs BP), and (3) in palustrine conditions in the IWP field that developed after drainage (SU3: 3120 cal yrs BP to AD 2012). The lacustrine phase (pre 3950 cal yrs BP) is characterized by planktonic-benthic and pioneer diatoms species indicating circumneutral waters, and very few plant macrofossils. The pollen record has captured a regional signal of relatively stable vegetation composition and climate for the lacustrine stage of the record until 3950 cal yrs BP. Palustrine conditions with benthic and acidophilic species characterize the peaty shallow-water environments of the low-centered IWP. The transition from lacustrine to palustrine conditions was accompanied by acidification and rapid revegetation of the lake bottom within about 100 years. Since the palustrine phase we consider the pollen record as a local vegetation proxy dominated by the plant communities growing in the IWP. Ice-wedge cracking in water-saturated sediments started immediately after lake drainage at about 3950 cal yrs BP and led to the formation of an IWP mire. Permafrost aggradation through downward closed-system freezing of the lake talik is indicated by the stable water isotope record. The originally submerged IWP center underwent gradual drying during the past 2000 years. This study highlights the sensitivity of permafrost landscapes to climate and environmental change throughout the Holocene.
Resumo:
The formation of many arctic wetlands is associated with the occurrence of polygon-patterned permafrost. Existing scenarios to describe and explain surface landforms in arctic wetlands (low-center and high-center polygons and polygon ponds) invoke competing hypotheses: a cyclic succession (the thaw-lake hypothesis) or a linear succession (terrestrialization). Both hypotheses infer the predictable development of polygon-patterned wetlands over millennia. However, very few studies have applied paleoecological techniques to reconstruct long-term succession in tundra wetlands and thereby test the validity of existing hypotheses. This paper uses the paleoecological record of diatoms to investigate long-term development of individual polygons in a High Arctic wetland. Two landform processes were examined: (1) the millennial-scale development of a polygon-pond, and (2) the transition from low-center to erosive high-center polygons. Diatom assemblages were quantified from habitats associated with contrasting landforms in the present-day landscape, and used as an analog to reconstruct past transitions between polygon types. On the basis of this evidence, the paleoecological record does not support either of the existing models describing the predictable succession of polygon landforms in an arctic wetland. Our results indicate a need for greater paleoecological understanding, in combination with in situ observations in present-day geomorphology, in order to identify patterns of polygon wetland development and elucidate the long-term drivers of these landform transitions.
Resumo:
The present study investigates the influence of environmental (temperature, salinity) and biological (growth rate, inter-generic variations) parameters on calcium isotope fractionation (d44/40Ca) in scleractinian coral skeleton to better constrain this record. Previous studies focused on the d44/40Ca record in different marine organisms to reconstruct seawater composition or temperature, but only few studies investigated corals. This study presents measurements performed on modern corals from natural environments (from the Maldives for modern and from Tahiti for fossil corals) as well as from laboratory cultures (Centre Scientifique de Monaco). Measurements on Porites sp., Acropora sp., Montipora verrucosa and Stylophora pistillata allow constraining inter-generic variability. Our results show that the fractionation of d44/40Ca ranges from 0.6 to 0.1 per mil, independent of the genus or the environmental conditions. No significant relationship between the rate of calcification and d44/40Ca was found. The weak temperature dependence reported in earlier studies is most probably not the only parameter that is responsible for the fractionation. Indeed, sub-seasonal temperature variations reconstructed by d18O and Sr/Ca ratio using a multi-proxy approach, are not mirrored in the coral's d44/40Ca variations. The intergeneric variability and intrageneric variability among the studied samples are weak except for S. pistillata, which shows calcium isotopic values increasing with salinity. The variability between samples cultured at a salinity of 40 is higher than those cultured at a salinity of 36 for this species. The present study reveals a strong biological control of the skeletal calcium isotope composition by the polyp and a weak influence of environmental factors, specifically temperature and salinity (except for S. pistillata). Vital effects have to be investigated in situ to better constrain their influence on the calcium isotopic signal. If vital effects could be extracted from the isotopic signal, the calcium isotopic composition of coral skeletons could provide reliable information on the calcium composition and budget in ocean.
Resumo:
Quantifying the spatial and temporal sea surface temperature (SST) and salinity changes of the Indo-Pacific Warm Pool is essential to understand the role of this region in connection with abrupt climate changes particularly during the last deglaciation. In this study we reconstruct SST and seawater d18O of the tropical eastern Indian Ocean for the past 40,000 years from two sediment cores (GeoB 10029-4, 1°30'S, 100°08'E, and GeoB 10038-4, 5°56'S, 103°15'E) retrieved offshore Sumatra. Our results show that annual mean SSTs increased about 2-3 °C at 19,000 years ago and exhibited southern hemisphere-like timing and pattern during the last deglaciation. Our SST records together with other Mg/Ca-based SST reconstructions around Indonesia do not track the monsoon variation since the last glacial period, as recorded by terrestrial monsoon archives. However, the spatial SST heterogeneity might be a result of changing monsoon intensity that shifts either the annual mean SSTs or the seasonality of G. ruber towards the warmer or the cooler season at different locations. Seawater d18O reconstructions north of the equator suggest fresher surface conditions during the last glacial and track the northern high-latitude climate change during the last deglaciation. In contrast, seawater ?18O records south of the equator do not show a significant difference between the last glacial period and the Holocene, and lack Bølling-Allerød and Younger Dryas periods suggestive of additional controls on annual mean surface hydrology in this part of the Indo-Pacific Warm Pool.
Resumo:
Three selected diamictite samples recovered within sequence group S3 at Sites 1097 (Sample 178-1097A-27R-1, 35-58 cm) and 1103 (Samples 178-1103A-31R-2, 0-4 cm, and 36R-3, 4-8 cm) of Ocean Drilling Program Leg 178 have been investigated by scanning electron microscope, electron microprobe, and 40Ar-39Ar laser-heating techniques. They contain variable proportions of fragments of volcanic rock groundmass (mostly in the range of 100-150 µm) with textures ranging from microcrystalline to ipocrystalline. Their rounded shapes indicate mechanical reworking. Fresh groundmass glasses, recognized only in grains from samples of Site 1103, show mainly a subalkaline affinity on the basis of total alkali-silica variations. However, they are characterized by relatively high TiO2 and P2O5 contents (1.4-2.8 and 0.1-0.9 wt%, respectively). Because of the small size of homogeneous grains (100-150 µm), they were not suitable for single-grain total fusion 40Ar-39Ar analyses. The incremental laser-heating technique was applied to milligram-sized samples (only for Samples 178-1097A-27R-1, 35-58 cm, and 178-1103A-36R-3, 4-8 cm) and to various small fractions (each consisting of 10 grains for the sample from Site 1097 and 30 grains for samples from Site 1103). The latter approach resulted in more effective resolution of sample heterogeneity. Argon ages from the small fractions show significantly different ranges in the three samples: 75-173 Ma for Sample 178-1097A-27R-1, 35-58 cm, 18-57 Ma for Sample 178-1103A-31R-2, 0-4 cm, and 7.6-50 Ma for Sample 178-1103A-36R-3, 4-8 cm. Ca/K ratios derived from argon isotopes at Site 1103 suggest that the data mainly refer to outgassing of groundmass glass. At Site 1103, we observe an overall apparent age increase with decreasing sample depth. This is compatible with glacial erosion that affected with time deeper levels of a volcanic sequence previously deposited on the continent. The youngest apparent age of 7.6 ± 0.7 Ma detected close to the bottom of Hole 1103A (340 meters below seafloor [mbsf]) is compatible with the age range of the diatom Actinocyclus ingens v. ovalis Zone (6.3-8.0 Ma) determined for the interval 320-355 mbsf and with the maximum ages derived from strontium isotope composition of barnacle fragments obtained at 262-263 mbsf at the same site. Nevertheless, this age cannot be taken as the maximum youngest age of the volcanic sequence sampled by glacial erosion or as the maximum age for the deposition of the Sequence S3 at 340 mbsf unless validated by further research.
Resumo:
The southwest Pacific Ocean covers a broad range of surface-water conditions ranging from warm, salty water in the subtropical East Australian Current to fresher, cold water in the Circumpolar Current. Using a new database of planktonic foraminifera assemblages (AUSMAT-F2), we demonstrate that the modern analog technique can be used to accurately reconstruct the magnitude of sea-surfacetemperature (SST) in this region. We apply this technique to data from 29 deep-sea cores along a meridional transect of the southwest Pacific Ocean to estimate the magnitude of SST cooling during the Last Glacial Maximum. We find minimal cooling in the tropics (0°-2°C), moderate cooling in the subtropical midlatitudes (2°-6°C), and maximum cooling to the southeast of New Zealand (6°-10°C). The magnitude of cooling at the sea surface from the tropics to the temperate latitudes is found to generally be less than cooling at the surface of adjacent land masses.
Resumo:
Volcanogenic rocks from the Sea of Okhotsk are divided into seven age complexes: Late Jurassic, Early Cretaceous, Late Cretaceous, Eocene, Late Oligocene, Late Miocene, and Pliocene-Pleistocene. All these complexes are united into two groups - Late Mesozoic and Cenozoic. Each group reflects a certain stage of development of the Sea of Okhotsk region. Late Mesozoic volcanites build the geological basement of the Sea of Okhotsk, and their petrochemical features are similar to those of the volcanic rocks from the Okhotsk-Chukotka Volcanogen. Pliocene-Pleistocene volcanites reflect stages of tectono-magmatic activity; the latter destroyed the continental margin and produced riftogenic troughs. Geochemical features of volcanites from the Sea of Okhotsk indicate influence of the sialic crust on magma formation and testify formation of the Okhotsk Sea Basin on the destructive margin of the Asian continent.
Resumo:
The feeding strategies of Calanus hyperboreus, C. glacialis, and C. finmarchicus were investigated in the high-Arctic Svalbard region (77-81 °N) in May, August, and December, including seasons with algal blooms, late- to post-bloom situations, and unproductive winter periods. Stable isotope and fatty acid trophic marker (FATM) techniques were employed together to assess trophic level (TL), carbon sources (phytoplankton vs. ice algae), and diet of the three Calanus species. In addition, population development, distribution, and nutritional state (i.e. storage lipids) were examined to estimate their population status at the time of sampling. In May and August, the vertical distribution of the three Calanus species usually coincided with the maximum algal biomass. Their stable isotope and fatty acid (FA) composition indicated that they all were essentially herbivores in May, when the algal biomass was highest. Their FA composition, however, revealed different food preferences. C. hyperboreus had high proportions of 18:4n3, suggesting that it fed mainly on Phaeocystis, whereas C. glacialis and C. finmarchicus had high proportions of 16:4n1, 16:1n7, and 20:5n3, suggesting diatoms as their major food source. Carbon sources (i.e. phytoplankton vs. ice algae) were not possible to determine solely from FATM techniques since ice-diatoms and pelagic-diatoms were characterised by the same FA. However, the enriched d13C values of C. glacialis and C. finmarchicus in May indicated that they fed both on pelagic- and ice-diatoms. Patterns in absolute FA and fatty alcohol composition revealed that diatoms were the most important food for C. hyperboreus and C. glacialis, followed by Phaeocystis, whereas diatoms, Phaeocystis and other small autotrophic flagellates were equally important food for C. finmarchicus. During periods of lower algal biomass, only C. glacialis exhibited evidence of significant dietary switch, with a TL indicative of omnivory (mean TL=2.4). Large spatial variability was observed in population development, distribution, and lipid store sizes in August. At the northernmost station at the southern margin of the Arctic Ocean, the three Calanus species had similarly low lipid stores as they had in May, suggesting that they ascended later in the year. In December, relatively lipid-rich specimens had TL similar to those during the peak productive season (TL~2.0), suggesting that they were hibernating and not feeding on the available refractory material available at that time of the year. In contrast, lipid-poor specimens in December had substantially high TL (TL=2.5), suggesting that they were active and possibly were feeding.
Resumo:
Manganese nodules of the Clarion-Clipperton Fracture Zone (CCFZ) in the NE Pacific Ocean are highly enriched in Ni, Cu, Co, Mo and rare-earth elements, and thus may be the subject of future mining operations. Elucidating the depositional and biogeochemical processes that contribute to nodule formation, as well as the respective redox environment in both, water column and sediment, supports our ability to locate future nodule deposits and evaluates the potential ecological and environmental effects of future deep-sea mining. For these purposes we evaluated the local hydrodynamics and pore-water geochemistry with respect to the nodule coverage at four sites in the eastern CCFZ. Furthermore, we carried out selective leaching experiments at these sites in order to assess the potential mobility of Mn in the solid phase, and compared them with the spatial variations in sedimentation rates. We found that the oxygen penetration depth is 180 - 300 cm at all four sites, while reduction of Mn and NO3- is only significant below the oxygen penetration depth at sites with small or no nodules on the sediment surface. At the site without nodules, potential microbial respiration rates, determined by incubation experiments using 14C-labelled acetate, are slightly higher than at sites with nodules. Leaching experiments showed that surface sediments covered with big or medium-sized nodules are enriched in mobilizable Mn. Our deep oxygen measurements and pore-water data suggest that hydrogenetic and oxic-diagenetic processes control the present-day nodule growth at these sites, since free manganese from deeper sediments is unable to reach the sediment surface. We propose that the observed strong lateral contrasts in nodule size and abundance are sensitive to sedimentation rates, which in turn, are controlled by small-scale variations in seafloor topography and bottom-water current intensity.
Resumo:
The eruption of Eyjafjallajökull volcano in 2010 lasted for 39 days, 14 April-23 May. The eruption had two explosive phases separated by a phase with lava formation and reduced explosive activity. The height of the plume was monitored every 5 min with a C-band weather radar located in Keflavík International Airport, 155 km distance from the volcano. Furthermore, several web cameras were mounted with a view of the volcano, and their images saved every five seconds. Time series of the plume-top altitude were constructed from the radar observations and images from a web camera located in the village Hvolsvöllur at 34 km distance from the volcano. This paper presents the independent radar and web camera time series and performs cross validation.
Resumo:
The sediments recovered on ODP Leg 104 have been reported to be characterized by hiatuses. The hiatuses were defined by biostratigraphy and were believed to be caused by erosion related to temporary changes of bottom current composition and velocity. They have been associated with major paleoenvironmental changes, reorganization of global deep water production, and increased bottom water flows. Because of the importance of hiatuses for ongoing research, we decided to closely investigate the sedimentation history for the most significant Pliocene and Miocene biostratigraphic hiatuses by sedimentologic and geochemical means. The sedimentologic studies include clay mineral distributions, grain size data, and organic carbon concentrations. The geochemical studies include determination of 87/86Sr ratios, 10Be and Ir concentrations. The results of the sedimentologic studies suggest either that paleoenvironmental changes associated with hiatuses are not represented in the preserved sediments, or that the hiatuses are an artifact of interpretation of the biostratigraphic data. Strontium isotopes indicate continuous sedimentation for the interval investigated at Site 642, an interpretation confirmed by the steady decline in 10Be. 87/86Sr ratios in the interval from above and below proposed hiatuses H 2.2/2.3 and H2.1/2.2 at Site 643 display stronger changes with depth than expected by steady sedimentation. Ir data for this same interval indicate reduced sedimentation rates. Combining both, sedimentologic and geochemical evidence, the proposed hiatuses could not be confirmed and may represent preservation artifacts.
Resumo:
At convergent margins, fluids rise through the forearc in response to consolidation of the upper plate and dewatering of the subducting plate, and produce various cold-seep-related features on the seafloor (mud diapirs, mud mounds). At the Central American forearc, authigenic carbonates precipitated from rising fluids within such structures during active venting while typical mixed-mud sediments were ejected onto the surrounding seafloor where they became intercalated with normal pelagic background sediments, indicating that mud mounds evolved unsteadily through alternating active and inactive phases. Intercalated regional ash layers from Plinian eruptions at the Central American volcanic arc provide time marks that constrain the ages of mud ejection activity. U/Th dating of drill core samples of authigenic carbonate caps of mud mounds yields ages agreeing well with those constrained by ash layers and showing that carbonate caps grow inward rather than outward during active venting. Both dating approaches show that offshore Nicaragua and Costa Rica (1) active and inactive phases can occur simultaneously at neighboring mounds, (2) mounds along the forearc have individual histories of activity, but there are distinct time intervals when nearly all mounds have been active or inactive, (3) lifetimes of mounds reach several hundred thousand years, and (4) highly active periods last 10-50 k.y. with intervening periods of >10 k.y. of relative quiescence.
Resumo:
Our understanding of the centennial-scale variability of the Brazil Current (BC) during the late Holocene is elusive because of the lack of appropriate records. Here we used the Mg/Ca and oxygen isotopic composition of planktonic foraminifera from two marine sediment cores collected at 27° S and 33° S off southeastern South America to assess the late Holocene variability in the upper water column of the BC. Our results show in phase fluctuations of up to 3 °C in sea surface temperatures (SST), and 0.8 per mil in oxygen isotopic composition of surface sea water, a proxy for relative sea surface salinity (SSS). Time-series analyses of our records indicate a cyclicity with a period of ca. 730 yr. We suggest that the observed cyclicity reflects variability in the strength of the BC associated to changes in the Atlantic meridional overturning circulation (AMOC). Positive (negative) SST and SSS anomalies are related to a strong (weak) BC and a weak (strong) AMOC. Moreover, periods of peak strength in the BC occur synchronously to a weak North Brazil Current, negative SST anomalies in the high latitudes of the North Atlantic, and positive (negative) precipitation anomalies over southeastern South America (equatorial Africa), further corroborating our hypothesis. This study shows a tight coupling between the variability of the BC and the high latitudes of the North Atlantic mediated by the AMOC even under late Holocene boundary conditions.