885 resultados para endosymbiotic dinoflagellates


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study documents, for the first time, the abundance and species composition of protist assemblages in Arctic sea ice during the dark winter period. Lack of knowledge of sea-ice assemblages during the dark period has left questions about the retention and survival of protist species that initiate the ice algal bloom. Sea-ice and surface water samples were collected between December 27, 2007 and January 31, 2008 within the Cape Bathurst flaw lead, Canadian Beaufort Sea. Samples were analyzed for protist identification and counts, chlorophyll (chl) a, and total particulate carbon and nitrogen concentrations. Sea-ice chl a concentrations (max. 0.27 µg/l) and total protist abundances (max. 4 x 10**3 cells/l) were very low, indicating minimal retention of protists in the ice during winter. The diversity of winter ice protists (134 taxa) was comparable to spring ice assemblages. Pennate diatoms dominated the winter protist assemblage numerically (averaging 77% of total protist abundances), with Nitzschia frigida being the most abundant species. Only 56 taxa were identified in surface waters, where dinoflagellates were the dominant group. Our results indicate that differences in the timing of ice formation may have a greater impact on the abundance than structure of protist assemblages present in winter sea ice and at the onset of the spring ice algal bloom.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A zonation is presented for the oceanic late Middle Jurassic to Late Jurassic of the Atlantic Ocean. The oldest zone, the Stephenolithion bigotii Zone (subdivided into a Stephanolithion hexum Subzone and a Cyclagelosphaera margerelii Subzone), is middle Callovian to early Oxfordian. The Vagalapilla stradneri Zone is middle Oxfordian to Kimmeridgian. The Conusphaera mexicana Zone, subdivided into a lower Hexapodorhabdus cuvillieri Subzone and a Polycostella beckmannii Subzone, is the latest Kimmeridgian to Tithonian. Direct correlation of this zonation with the boreal zonation established for Britain and northern France (Barnard and Hay, 1974; Medd, 1982; Hamilton, 1982) is difficult because of poor preservation resulting in low diversity for the cored section at Site 534 and a lack of Tithonian marker species in the boreal realm. Correlations based on dinoflagellates and on nannofossils with stratotype sections (or regions) give somewhat different results. Dinoflagellates give generally younger ages, especially for the Oxfordian to Kimmeridgian part of the recovered section, than do nannofossils.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phytoplankton of a surface strongly desalinated water lens was investigated on the basis of materials collected during Cruise 57 of R/V Akademik Mstislav Keldysh in September 2007. The lens with salinity <18 psu had area of ca. 19000 sq. km and was located in the northwestern part of the Kara Sea near the eastern coast of Novaya Zemlya. It was a specific biotope that had been isolated from surrounding waters for more than three months. In the investigated area 66 algae species were identified. The maximal species diversity was found in the upper layers of the desalinated lens, where species number was 1.5 to 3 times higher than in other parts of the water column. Phytoplankton abundance in the upper layers of the lens was 1.5 to 4.5 times higher than in its lower part and generally higher than below the picnocline. Diatoms were the most abundant group in the upper layers of the lens, while flagellates dominated in the subpicnocline part of the water column. Maximal values of phytoplankton biomass were observed everywhere in the upper layers of the lens, where they were 1.2 to 3.7 times higher than in the lower part of the lens and 1.3 to 7.2 times higher than in the layer below the picnocline. Dinoflagellates generally gave the most contribution to total phytoplankton biomass. Phytoplankton of the desalinated surface lens in the northwestern part of the Kara Sea by its composition and quantitative parameters had the nearest resemblance to a phytocenosis that we observed two weeks later at a shallow desalinated shelf closely adjacent to the Ob estuary.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main objectives of this study are (1) to characterize the spatial and temporal variations in organic matter deposited in upwelling and related sediments (manifest in the palynoclast and organic-walled microplankton assemblages) and (2) to relate these variations to paleoenvironmental changes. A total of 40 samples from Holes 679D, 680B, 681B, 684B, 686B, and 687B were analyzed. Without exception, amorphogen dominates the palynoclast assemblages overwhelmingly. Influx of terrestrial particulate organic matter to the marine realm was extremely low. Levels of amorphogen swamp other palynoclast categories, and little significance can be attached to any variations observed. Microplankton dominate the palynomorph assemblages, with variable levels of subordinate foraminiferal test linings. Miospores are rare and are absent in most samples. Foraminiferal test linings are particularly abundant in the shallowest samples, which may reflect low surface-water paleotemperatures. Cysts of heterotrophic peridiniacean dinoflagellates (P-cysts) dominate the microplankton assemblages, with variable levels of cysts of autotrophic gonyaulacacean dinoflagellates (G-cysts). Samples dominated by P-cysts are derived largely from laminated, unbioturbated units deposited under the influence of strong upwelling. A lower abundance of P-cysts in some samples is restricted to unlaminated, bioturbated units deposited under oxygenated conditions. We conclude that the ratio of P-cysts to G-cysts is a useful indicator of variable upwelling strength. Detailed study of the variations in the microplankton assemblages offers one the greatest potential for palynological characteriztion and understanding of the upwelling system.