468 resultados para Stöd
Resumo:
During 2007 we launched a geodetic campaign on the Svalbard ice cap Vestfonna in order to estimate the velocity field of the ice cap. This was done within the frame of the IPY project KINNVIKA. We present here the velocity measurements derived from our campaigns 2007-2010 and compare the geodetic measurements against InSAR velocity fields from satellite platforms from 1995/96 and 2008. We find the spatial distribution of ice speeds from the InSAR is in good agreement within the uncertainty limits with our geodetic measurements. We observe no clear indication of seasonal ice speed differences, but we find a speed-up of the outlet glacier Franklinbreen between the InSAR campaigns, and speculate the outlet is having a surge phase.
Resumo:
Volcanic signatures in ice-core records provide an excellent means to date the cores and obtain information about accumulation rates. From several ice cores it is thus possible to extract a spatio-temporal accumulation pattern. We show records of electrical conductivity and sulfur from 13 firn cores from the Norwegian-USA scientific traverse during the International Polar Year 2007-2009 (IPY) through East Antarctica. Major volcanic eruptions are identified and used to assess century-scale accumulation changes. The largest changes seem to occur in the most recent decades with accumulation over the period 1963-2007/08 being up to 25% different from the long-term record. There is no clear overall trend, some sites show an increase in accumulation over the period 1963 to present while others show a decrease. Almost all of the sites above 3200 m above sea level (asl) suggest a decrease. These sites also show a significantly lower accumulation value than large-scale assessments both for the period 1963 to present and for the long-term mean at the respective drill sites. The spatial accumulation distribution is influenced mainly by elevation and distance to the ocean (continentality), as expected. Ground-penetrating radar data around the drill sites show a spatial variability within 10-20% over several tens of kilometers, indicating that our drill sites are well representative for the area around them. Our results are important for large-scale assessments of Antarctic mass balance and model validation.
Resumo:
Envisat Advanced Synthetic Aperture Radar (ASAR) Wide Swath Mode (WSM) images are used to derive C-band HH-polarization normalized radar cross sections (NRCS). These are compared with ice-core analysis and visual ship-based observations of snow and ice properties observed according to the Antarctic Sea Ice Processes and Climate (ASPeCt) protocol during two International Polar Year summer cruises (Oden 2008 and Palmer 2009) in West Antarctica. Thick first-year (TFY) and multi-year (MY) ice were the dominant ice types. The NRCS value ranges between -16.3 ± 1.1 and -7.6 ± 1.0 dB for TFY ice, and is -12.6 ± 1.3 dB for MY ice; for TFY ice, NRCS values increase from ~-15 dB to -9 dB from December/January to mid-February. In situ and ASPeCt observations are not, however, detailed enough to interpret the observed NRCS change over time. Co-located Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) vertically polarized 37 GHz brightness temperatures (TB37V), 7 day and 1 day averages as well as the TB37V difference between ascending and descending AMSR-E overpasses suggest the low NRCS values (-15 dB) are associated with snowmelt being still in progress, while the change towards higher NRCS values (-9dB) is caused by commencement of melt-refreeze cycles after about mid-January.
Resumo:
Due to sampling difficulties, little is known about microbial communities associated with sinking marine snow in the twilight zone. A drifting sediment trap was equipped with a viscous cryogel and deployed to collect intact marine snow from depths of 100 and 400 m off Cape Blanc (Mauritania). Marine snow aggregates were fixed and washed in situ to prevent changes in microbial community composition and to enable subsequent analysis using catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH). The attached microbial communities collected at 100 m were similar to the free-living community at the depth of the fluorescence maximum (20 m) but different from those at other depths (150, 400, 550, and 700 m). Therefore, the attached microbial community seemed to be "inherited" from that at the fluorescence maximum. The attached microbial community structure at 400 m differed from that of the attached community at 100 m and from that of any free-living community at the tested depths, except that collected near the sediment at 700 m. The differences between the particle-associated communities at 400 m and 100 m appeared to be due to internal changes in the attached microbial community rather than de novo colonization, detachment, or grazing during the sinking of marine snow. The new sampling method presented here will facilitate future investigations into the mechanisms that shape the bacterial community within sinking marine snow, leading to better understanding of the mechanisms which regulate biogeochemical cycling of settling organic matter.
Resumo:
The Astoria submarine fan, located off the coast of Washington and Oregon, has grown throughout the Pleistocene from continental input delivered by the Columbia River drainage system. Enormous floods from the sudden release of glacial lake water occurred periodically during the Pleistocene, carrying vast amounts of sediment to the Pacific Ocean. DSDP site 174, located on the southern distal edge of the Astoria Fan, is composed of 879 m of terrigenous sediments. The section is divided into two major units separated by a distinct seismic discontinuity: an upper, turbidite fan unit (Unit I), and an underlying finer-grained unit (Unit II). Both units have overlapping ranges of Nd and Hf isotope compositions, with the majority of samples having e-Nd values of -7.1 to -15.2 and eHf values -6.2 to -20.0; the most notable exception is the uppermost sample in the section, which is identical to modern Columbia River sediment. Nd depleted mantle model ages for the site range from 2.0 to 1.2 Ga and are consistent with derivation from cratonic Proterozoic source regions, rather than Cenozoic and Mesozoic terranes proximal to the Washington-Oregon coast. The Astoria Fan sediments have significantly less radiogenic Nd (and Hf) isotopic compositions than present day Columbia River sediment (e-Nd=-3 to -4; [Goldstein, S.J., Jacobsen, S.B., 1987. Nd and Sr isotopic systematics of river water suspended material: implications for crustal evolution. Earth. Planet. Sci. Lett. 87, 249-265; doi:10.1016/0012-821X(88)90013-1]), and suggest that outburst flooding, tapping Proterozoic source regions, was the dominant sediment transport mechanism in the genesis and construction of the Astoria Fan. Pb isotopes form a highly linear 207Pb/204Pb - 206Pb/204Pb array, and indicate the sediments are a binary mixture of two disparate sources with isotopic compositions similar to Proterozoic Belt Supergroup metasediments and Columbia River Basalts. The combined major, trace and isotopic data argue that outburst flooding was responsible for depositing the majority (top 630 m) of the sediment in the Astoria Fan.
Resumo:
A downhole decrease in 18O, Mg(2+) and K+, an increase in Ca(2+) and a low 87Sr/86Sr ratio of 0.7067 in the pore fluids of DSDP site 323 were caused principally by the alteration of volcanic material. These chemical and isotopic patterns were produced by the alteration, in order of decreasing importance of: a 60-m thick basal layer of volcanic ash; the underlying basalts; and igneous components in the 640-m thick upper sequence composed largely of terrigenous material. A significant portion of the alteration of the ash in the basal sequence must have occurred before the deposition of the upper sediments, perhaps under the influence of advecting solutions. The rest of the alteration occurred during the deposition of the thick upper sediments. Mass balance considerations and the low d18O values of most of the alteration products suggest that much of the later alteration occurred progressively over the last 13 Myr. The principal alteration products were smectite, potassium feldspar, clinoptilolite and calcite.
Resumo:
A depth transect of cores from 1268 to 3909 m water depth in the western South Atlantic are ideally situated to monitor the interocean exchange of deep water and variations in the relative strength of northern and southern sources of deep water production. Benthic foraminiferal Cd/Ca and d13C data suggest that Glacial North Atlantic Intermediate Water (GNAIW) extended at least as far south as 28°S in the western South Atlantic. The core of nutrient-depleted water was situated at ~1500 m, above and below water masses with higher nutrient concentrations. When examined in conjunction with published paired Cd/Ca and d13C from intermediate depth cores from other basins, it appears that the extent of GNAIW influence on the intermediate waters of the world's oceans was less than suggested previously. Differentiating among possible pathways for the glacial deep ocean (>3 km) requires a better understanding of the controls on Cd/Ca and d13C values of benthic foraminifera.
Resumo:
Millennial-scale paleoceanographic changes in the Bering Sea during the last 71 kyrs were reconstructed using geochemical and isotope proxies (biogenic opal, CaCO3, and total organic carbon (TOC), nitrogen and carbon isotopes of sedimentary organic matters) and microfossil (radiolaria and foraminifera) data from two cores (PC23A and PC24A) which were collected from the northern continental slope area at intermediate water depths. Biogenic opal and TOC contents were generally high with high sedimentation rates during the last deglaciation. Laminated sediment depositions during the Early-Holocene (EH) and Bølling-Allerød (BA) were closely related with the increased primary productivity recorded by high biogenic opal and TOC contents and high d15N values. Enhanced surface-water productivity was attributed to increased nutrient supply from strengthened Bering Slope Current (BSC) and from increased amount of glacial melt-water, resulting in high C/N ratios and low d13C values, and high proportion of Rhizoplegma boreale during the last deglaciation. In contrast, low surface-water productivity during the last glacial period was due to depleted nutrient supply caused by strong stratification and to restricted phytoplankton bloom by extensive sea ice distribution under cold climates. Extensive formation of sea ice produces more oxygen-rich intermediate-water, leading to oxic bottom-water conditions due to active ventilation, which favored good preservation of oxic benthic foraminifera species. Remarkable CaCO3 peaks coeval with high biogenic opal and TOC contents in both cores during MIS 3 to MIS 4 are most likely correlated with Dansgaard-Oeschger (D-O) events. High d15N and d13Corg values during D-O interstadials support increased surface-water productivity resulting from nutrients supplied mainly by intensified BSC. During the EH, BA and D-O interstadials, dominant benthic foraminifera species indicate dysoxic bottom-water conditions as a result of increased surface-water productivity and weak ventilation of intermediate-water with mitigated sea ice development caused by strengthening of the Alaskan Stream. It is of note that the bottom-water conditions and formation of intermediate-water in the Bering Sea during the last glacial period are related to the variation of dissolved oxygen concentration of the bottom-water in the northeastern Pacific and to strong ventilation of intermediate-water in the northwestern Pacific. Thus, the millennial-scale paleoceanographic events in the Bering Sea during the D-O interstadials are closely associated with the intermediate-water ventilation, ultimately leading to weakening of North Pacific Intermediate Water.
Resumo:
Multisensor track data, including magnetic susceptibility, gamma-ray attenuation porosity evaluator (GRAPE) wet bulk density, and natural gamma emission, were collected on all cores recovered during Ocean Drilling Program Leg 162. Data from the upper Pliocene and lower Pleistocene of Sites 981 and 984 are here compared to results from analyses of a limited set of discrete samples, including benthic foraminiferal isotopic composition, grain size, carbonate content, abundance of foraminifers and lithic particles, and clay mineralogy. Natural gamma emission most closely monitors the input of felsic terrigenous material to these two sites. Magnetic susceptibility also tracks felsic terrigenous input at Site 981 but appears to reflect a separate, more mafic, terrigenous component at Site 984. The GRAPE record does not correlate well with any discretely measured variable at Sites 981 or 984.
Resumo:
Evidence from the Irish Sea basin supports the existence of an abrupt rise in sea level (meltwater pulse) at 19,000 years before the present (B.P.). Climate records indicate a large reduction in the strength of North Atlantic Deep Water formation and attendant cooling of the North Atlantic at this time, indicating a source of the meltwater pulse from one or more Northern Hemisphere ice sheets.Warming of the tropical Atlantic and Pacific oceans and the Southern Hemisphere also began at 19,000 years B.P. These responses identify mechanisms responsible for the propagation of deglacial climate signals to the Southern Hemisphere and tropics while maintaining a cold climate in the Northern Hemisphere.
Resumo:
Sites 815 and 817 were drilled near the Townsville Trough during Leg 133 of the Ocean Drilling Program. The physical properties, compressional-wave velocity, and consolidation characteristics indicate that the periplatform carbonate sediments maintain more water content and lower compressional velocity near the Queensland Plateau than the clayey hemipelagic sediments, which have a clay content of up to 60%. Bulk density, void ratio or porosity, water content, and compressional-wave velocity are shown to have a linear relationship with burial depth. Between 3.5 and 5 Ma (about 100-500 mbsf), these physical properties maintained a constant rate vs. the depth in core because of the fast sedimentation-rate effect at Site 815. However, compressionalwave velocity still increases downward in this section. The clay content in this section causes an increase of bulk modulus and compaction effect. At Site 817, scarce terrigenous mud content and abundant carbonate content (88%-97%) cause a straight line relationship between physical properties and burial depth. During the consolidation test, we show that dominant micritic particles may cause faster acoustic velocity than sediments composed mainly of coccoliths. The bulk modulus ratio increasing rate in the clay-rich carbonate sediments is almost 4.5 times higher than in the clay-free periplatform carbonate sediments.
Resumo:
40Ar-39Ar incremental heating experiments and electron microprobe analyses were performed on basaltic rocks recovered from Site 1001 during Ocean Drilling Program Leg 165. The lower Nicaraguan Rise, on which Site 1001 lies, appears to be part of a larger Caribbean oceanic plateau that makes up the core of the Caribbean plate. Our results indicate an eruption age of 81 ± 1 Ma. A single flow-rim glass is tholeiitic and almost identical to the shipboard X-ray fluorescence analyses of the whole rock. The slightly porphyritic basalts have at least two populations of plagioclase, groundmass, and glomerocrystic plagioclase laths that appear to be in equilibrium with the surrounding melt and corroded tabular phenocrysts that have a higher An content (An84-86).
Resumo:
Instrumental data suggest that major shifts in tropical Pacific atmospheric dynamics and hydrology have occurred within the past century, potentially in response to anthropogenic warming. To better understand these trends, we use the hydrogen isotopic ratios of terrestrial higher plant leaf waxes (DDwax) in marine sediments from southwest Sulawesi, Indonesia, to compile a detailed reconstruction of central Indo-Pacific Warm Pool (IPWP) hydrologic variability spanning most of the last two millennia. Our paleodata are highly correlated with a monsoon reconstruction from Southeast Asia, indicating that intervals of strong East Asian summer monsoon (EASM) activity are associated with a weaker Indonesian monsoon (IM). Furthermore, the centennial-scale oscillations in our data follow known changes in Northern Hemisphere climate (e.g., the Little Ice Age and Medieval Warm Period) implying a dynamic link between Northern Hemisphere temperatures and IPWP hydrology. The inverse relationship between the EASM and IM suggests that migrations of the Intertropical Convergence Zone and associated changes in monsoon strength caused synoptic hydrologic shifts in the IPWP throughout most of the past two millennia.
Resumo:
From the equatorial Indian Ocean, carbonate-free portions of sediment samples of Paleocene to Miocene calcareous oozes and chalks from Sites 707, 709, and 711 were studied using X-ray diffraction measurements and the scanning electron microscope. Downhole variations in biogenic opal, quartz, barite, and clinoptilolite were investigated. The abundance patterns of these major mineral phases show several similarities and may be used for additional lithologic correlations. Variations in biogenic opal contents reflect biogenic silica productivity. Beside the general pattern, a succession in biogenic silica decrease through time is generally recorded since the Oligocene. This succession started earliest at northernmost Site 711 and latest at southernmost Site 707, including Site 709 within these two. Opal-A variations as well as the barite distribution may be influenced by the paleoposition of the sites in relation to the high-productivity zone, which today lies south of the equator. Authigenic clinoptilolite apparently formed in two different modes. In deeper sediment intervals, clinoptilolite was the last mineral phase formed associated with enhanced silica diagenesis. In late Oligocene to middle Miocene sediments, clinoptilolite was the only authigenic silica phase encountered where otherwise strong opal dissolution was observed. The sponge spicules showed special dissolution features probably related to microbiological activity. Silica concretions mainly composed of opal-CT and authigenic quartz occur in carbonate-rich environments and are formed during later diagenesis when burial depth causes the sediments to reach higher temperatures. Opal-CT concretions in carbonate-free siliceous oozes were found at Site 711 and are probably formed during an early stage of silica diagenesis.
Resumo:
40Ar-39Ar step-heating dating was applied to a basalt from Hole 462 and to basalt and dolerite samples from Hole 462A. Only a basalt sample at Hole 462A yielded a reasonable isochron age, 110 ± 3 million years. The radiometric age is consistent with the fossil record (Cenomanian) in the sediments, into which the basalt sill intruded. However, the age is much less than that of the oceanic basement as deduced from the magnetic anomaly (M-26).