885 resultados para Ocean bottom
Resumo:
During the Pleistocene glaciations, Arctic ice sheets on western Eurasia, Greenland and North America terminated at their continental margins. In contrast, the exposed continental shelves in the Beringian region of Siberia are thought to have been covered by a tundra landscape. Evidence of grounded ice on seafloor ridges and plateaux off the coast of the Beringian margin, at depths of up to 1,000 m, have generally been attributed to ice shelves or giant icebergs that spread oceanwards during glacial maxima. Here we identify marine glaciogenic landforms visible in seismic profiles and detailed bathymetric maps along the East Siberian continental margin. We interpret these features, which occur in present water depths of up to 1,200 m, as traces from grounding events of ice sheets and ice shelves. We conclude that the Siberian Shelf edge and parts of the Arctic Ocean were covered by ice sheets of about 1 km in thickness during several Pleistocene glaciations before the most recent glacial period, which must have had a significant influence on albedo and oceanic and atmospheric circulation.
Resumo:
Study of basaltic debris from the Kara Sea bottom has shown its similarity to traps of the Eastern Siberia in mineralogy, structures and chemical composition. In comparison with oceanic tholeiites, the source of traps and Kara Sea basin basaltic melts was enriched in REE and some other incompatible elements. K-Ar dating of two samples of supposed autochtonous location from the eastern part of the Kara Sea basin has shown 209 and 218 Ma - younger than traps (247-248 Ma). Origin of Siberian traps used to connect with action of the mantle plume (Iceland plume, according to geodinamic reconstruction). Our new age data may be interpreted as an evidence of the Siberian plate moving over the head of plume.
Resumo:
Using gas chromatography technique we examined molecular composition of n-alkanes and lignin from bottom sediments of a core 385 cm long collected in the region of the Blake-Bahama Abyssal Plain. We determined C_org concentrations and lignin composition in soils, mangrove roots and leaves, in algae Sargassum and Ascophyllum, in corals and timber of a sunken ship; they were compared with data on lignin in bottom sediments. Mixed planktonogenic and terrigenous origin of organic matter in the core was proved with different proportions of terrigenous and planktonogenic components at different levels. Multiple changes in dominating sources of organic matter over a period required for accumulation of a four meter thick sedimentary sequence (about 4 m) are shown as obtained from changes in composition and contents of organic-chemical markers referring to classes of n-alkanes and phenols.
Resumo:
During the late Pliocene-middle Pleistocene, 63 species of elongate, bathyal-upper abyssal benthic foraminifera (Extinction Group = Stilostomellidae, Pleurostomellidae, some Nodosariidae) declined in abundance and finally disappeared in the northern Indian Ocean (ODP Sites 722, 758), as part of the global extinction of at least 88 related species at this time. The detailed record of withdrawal of these species differs by depth and geography in the Indian Ocean. In northwest Indian Ocean Site 722 (2045 m), the Extinction Group of 54 species comprised 2-15% of the benthic foraminiferal fauna in the earliest Pleistocene, but declined dramatically during the onset of the mid-Pleistocene Transition (MPT) at 1.2-1.1 Ma, with all but three species disappearing by the end of the MPT (~0.6 Ma). In northeast Indian Ocean Site 758 (2925 m), the Extinction Group of 44 species comprised 1-5% of the benthic foraminiferal fauna at ~3.3-2.6 Ma, but declined in abundance and diversity in three steps, at ~2.5, 1.7, and 1.2 Ma, with all but one species disappearing by the end of the MPT. At both sites there are strong positive correlations between the accumulation rate of the Extinction Group and proxies indicating low-oxygen conditions with a high organic carbon input. In both sites, there was a pulsed decline in Extinction Group abundance and species richness, especially in glacial periods, with some partial recoveries in interglacials. We infer that the glacial declines at the deeper Site 758 were a result of increased production of colder, well-ventilated Antarctic Bottom Water (AABW), particularly in the late Pliocene and during the MPT. The Extinction Group at shallower water depths (Site 722) were not impacted by the deeper water mass changes until the onset of the MPT, when cold, well-ventilated Glacial North Atlantic Intermediate Water (GNAIW) production increased and may have spread into the Indian Ocean. Increased chemical ventilation at various water depths since late Pliocene, particularly in glacial periods, possibly in association with decreased or more fluctuating organic carbon flux, might be responsible for the pulsed global decline and extinction of this rather specialised group of benthic foraminifera.
Resumo:
The first thorough analysis of microfossils from ore-bearing sediments of the Ashadze-1 Hydrothermal Field in the Mid-Atlantic Ridge sampled during Cruise 26 of R/V Professor Logachev in 2005 revealed substantial influence of hydrothermal processes on preservation of planktonic calcareous organisms as well as on preservation and composition of benthic foraminifera. From lateral and vertical distribution patterns and secondary alterations of microfossils it is inferred that the main phase of hydrothermal mineralization occurred in Holocene. Heavy metals (Cu, Co, Cr, and Ag) were accumulated by foraminiferal tests and in their enveloping Fe-Mn crusts. Distribution of authigenic minerals replacing foraminiferal tests demonstrates local zoning related to hydrothermal activity. There are three mineral-geochemical zones defined: sulfide zone, zone with elevated Mg content, and zone of Fe-Mn crusts.
Resumo:
The studies described here base mainly on sedimentary material collected during the "Indian Ocean Expedition" of the German research vessel "Meteor" in the region of the Indian-Pakistan continental margin in February and March 1965. Moreover,samples from the mouth of the Indus-River were available, which were collected by the Pakistan fishing vessel "Machhera" in March 1965. Altogether, the following quantities of sedimentary material were collected: 59.73 m piston cores. 54.52 m gravity cores. 33 box grab samples. 68 bottom grab samples Component analyses of the coarse fraction were made of these samples and the sedimentary fabric was examined. Moreover, the CaCO3 and Corg contents were discussed. From these investigations the following history of sedimentation can be derived: Recent sedimentation on the shelf is mainly characterized by hydrodynamic processes and terrigenous supply of material. In the shallow water wave action and currents running parallel to the coast, imply a repeated reworking which induces a sorting of the grains and layering of the sediments as well as a lack of bioturbation. The sedimentation rate is very high here. From the coast-line down to appr. 50 m the sediment becomes progressively finer, the conditions of deposition become less turbulent. On the outer shelf the sediment is again considerably coarser. It contains many relicts of planktonic organisms and it shows traces of burrowing. Indications for redeposition are nearly missing, a considerable part of the fine fraction of the sediments is, however, whirled up and carried away. In wide areas of the outer shelf this stirring has gained such a degree that recent deposits are nearly completely missing. Here, coarse relict sands rich in ooids are exposed, which were formed in very shallow stirred water during the time when the sea reached its lowest level, i.e. at the turn of the Pleistocene to the Holocene. Below the relict sand white, very fine-grained aragonite mud was found at one location (core 228). This aragonite mud was obviously deposited in very calm water of some greater depth, possibly behind a reef barrier. Biochemic carbonate precipitation played an important part in the formation of relict sands and aragonite muds. In postglacial times the relict sands were exposed for long periods to violent wave action and to areal erosion. In the present days they are gradually covered by recent sediments proceeding from the sides. On the continental margin beyond the shelf edge the distribution of the sediments is to a considerable extent determined by the morphology of the sea bottom. The material originating from the continent and/or the shelf, is less transported by action of the water than by the force of gravity. Within the range of the uppermost part of the continental slope recent sedimentation reaches its maximum. Here the fine material is deposited which has been whirled up in the zone of the relict sands. A laminated fine-grained sediment is formed here due to the very high sedimentation rate as well as to the extremely low O2-content in the bottom water, which prevents life on the bottom of the sea and impedes thus also bioturbation. The lamination probaly reflects annual variation in deposition and can be attributed to the rhythm of the monsoon with its effects on the water and the weather conditions. In the lower part of the upper continental slope sediments are to be found which show in varying intensity, intercalations of fine material (silt) from the shelf, in large sections of the core. These fine intercalations of allochthonous material are closely related to the autochthonous normal sediment, so that a great number of small individual depositional processes can be inferred. In general the intercalations are missing in the uppermost part of the cores; in the lower part they can be met in different quantities, and they reach their maximum frequency in the upper part of the lower core section. The depositions described here were designated as turbid layer sediments, since they get their material from turbid layers, which transport components to the continental slope which have been whirled up from the shelf. Turbidites are missing in this zone. Since the whole upper continental slope shows a low oxygen-content of the bottom water the structure of the turbid layer sediments is more or less preserved. The lenticular-phacoidal fine structure does, however, not reflect annual rhythms, but sporadic individual events, as e.g. tsunamis. At the lower part of the continental slope and on the continental rise the majority of turbidites was deposited, which, during glacial times and particularly at the beginning of the post-glacial period, transported material from the zone of relict sands. The Laccadive Ridge represented a natural obstacle for the transport of suspended sediments into the deep sea. Core SIC-181 from the Arabian Basin shows some intercalations of turbidites; their material, however, does not originate from the Indian Shelf, but from the Laccadive Ridge. Within the range of the Indus Cone it is surprising that distinct turbidites are nearly completely missing; on the other hand, turbid layer sediments are to be found. The bottom of the sea is showing still a slight slope here, so that the turbidites funneled through the Canyon of the Swatch probably rush down to greater water depths. Due to the particularly large supply of suspended material by theIndus River the turbid layer sediments show farther extension than in other regions. In general the terrigenous components are concentrated on the Indus Cone. It is within the range of the lower continental slope that the only discovery of a sliding mass (core 186) has been located. It can be assumed that this was set in motion during the Holocene. During the period of time discussed here the following development of kind and intensity of the deposition of allochthonous material can be observed on the Indian-Pakistan continental margin: At the time of the lowest sea level the shelf was only very narrow, and the zone in which bottom currents were able to stir up material by oscillating motion, was considerably confined. The rivers flowed into the sea near to the edge of the shelf. For this reason the percentage of terrigenous material, quartz and mica is higher in the lower part of many cores (e.g. cores 210 and 219) than in the upper part. The transition from glacial to postglacial times caused a series of environmental changes. Among them the rise of the sea level (in the area of investigation appr. 150 m) had the most important influence on the sedimentation process. In connection with this event many river valleys became canyons, which sucked sedimentary material away from the shelf and transported it in form of turbidites into the deep sea. During the rise of the sea level a situation can be expected with a maximum area of the comparatively plane shelf being exposed to wave action. During this time the process of stirring up of sediments and formation of turbid layers will reach a maximum. Accordingly, the formation of turbidites and turbid layer sediments are most frequent at the same time. This happened in general in the older polstglacial period. The present day high water level results in a reduced supply of sediments into the canyons. The stirring up of sediments from the shelf by wave action is restricted to the finest material. The missing of shelf material in the uppermost core sections can thus be explained. The laminated muds reflect these calm sedimentation conditions as well. In the southwestern part of the area of investigation fine volcanic glass was blown in during the Pleistocene, probably from the southeast. It has thus become possible to correlate the cores 181, 182, 202. Eolian dust from the Indian subcontinent represents probably an important component of the deep sea sediments. The chemism of the bottom as well as of the pore water has a considerable influence on the development of the sediments. Of particular importance in this connection is a layer with a minimum content of oxygen in the sea water (200-1500 m), which today touches the upper part of the continental slope. Above and beyond this oxygen minimum layer somewhat higher O2-values are to be observed at the sea bottom. During the Pleistocene the oxygen minimum layer has obviously been locatedin greater depth as is indicated by the facies of laminated mud occuring in the lower part of core 219. The type of bioturbation is mainly determined by the chemism. Moreover, the chemism is responsible for a considerable selective dissolution, either complete or partial, of the sedimentary components. Within the range of the oxygen minimum layer an alkaline milieu is developed at the bottom. This causes a complete or partial dissolution of the siliceous organisms. Here, bioturbation is in general completely missing; sometimes small pyrite-filled burrowing racks are found. In the areas rich in O2 high pH-values result in a partial dissolution of the calcareous shells. Large, non-pyritized burrowing tracks characterize the type of bioturbation in this environment. A study of the "lebensspuren" in the cores supports the assumption that, particularly within the region of the Laccadive Basin, the oxygen content in the bottom sediments was lower than during the Holocene. This may be attributed to a high sedimentation rate and to a lower O2-content of the bottom water. The composition of the allochthonous sedimentary components, detritus and/or volcanic glass may locally change the chemism to a considerable extent for a certain time; under such special circumstances the type of bioturbation and the state of preservation of the components may be different from those of the normal sediment.
Resumo:
The paper deals with regularities of distribution of iron, manganese, copper, nickel, and vanadium in interstitial waters from different lithofacies types of bottom sediments on the profile from the coast of Mexico to the Wake Atoll in the Pacific Ocean. With increasing distance from the shore and with transition from reduced coastal sediments to oxidized deep-sea red clays concentration of iron and manganese in the interstitial waters greatly decreases. Elevated concentration of dissolved iron (0.34 mg/l) was observed only in highly reduced terrigenous sediments from the shelf and continental slope of Mexico. The highest concentrations of manganese (13.2 mg/l) were measured in hemipelagic carbonate-siliceous-clayey sediments. Compared to Pacific seawater interstitial waters are enriched in Fe, Mn, Cu, Ni, V. Interstitial waters contain only from 0.000004 to 1.2% of total contents of these elements in bottom sediments.
Resumo:
Humidity and wet and dry bulk densities were determined for bottom sediments of the Lena River marginal filter within a 700 km section from the outer boundary of the river delta. Earlier determinations of suspended matter concentration in water, material and grain-size composition and age of sediments were made along the same section. Sediment matter fluxes (accumulation rates), their changes in space and time (about 14 ka) were inferred from measurements of physical parameters. A correlation was found between the physical parameters of bottom sediments and changes in the Lena river marginal filter including those caused by sea-level fluctuations.
Resumo:
We compared lifetime and population energy budgets of the extraordinary long-lived ocean quahog Arctica islandica from 6 different sites - the Norwegian coast, Kattegat, Kiel Bay, White Sea, German Bight, and off northeast Iceland - covering a temperature and salinity gradient of 4-10°C (annual mean) and 25-34, respectively. Based on von Bertalanffy growth models and size-mass relationships, we computed organic matter production of body (PSB) and of shell (PSS), whereas gonad production (PG) was estimated from the seasonal cycle in mass. Respiration (R) was computed by a model driven by body mass, temperature, and site. A. islandica populations differed distinctly in maximum life span (40 y in Kiel Bay to 197 y in Iceland), but less in growth performance (phi' ranged from 2.41 in the White Sea to 2.65 in Kattegat). Individual lifetime energy throughput, as approximated by assimilation, was highest in Iceland (43,730 kJ) and lowest in the White Sea (313 kJ). Net growth efficiency ranged between 0.251 and 0.348, whereas lifetime energy investment distinctly shifted from somatic to gonad production with increasing life span; PS/PG decreased from 0.362 (Kiel Bay, 40 y) to 0.031 (Iceland, 197 y). Population annual energy budgets were derived from individual budgets and estimates of population mortality rate (0.035/y in Iceland to 0.173/y in Kiel Bay). Relationships between budget ratios were similar on the population level, albeit with more emphasis on somatic production; PS/ PG ranged from 0.196 (Iceland) to 2.728 (White Sea), and P/B ranged from 0.203-0.285/y. Life span is the principal determinant of the relationship between budget parameters, whereas temperature affects net growth efficiency only. In the White Sea population, both growth performance and net growth efficiency of A. islandica were lowest. We presume that low temperature combined with low salinity represent a particularly stressful environment for this species.
Resumo:
A rapid potentiometric method for measuring ionic and total fluorine concentrations in sea water with aid of a fluorine-selective electrode is described and corresponding measurements in the 0-2000 m layer of the western Sargasso Sea and in the Gulf Stream are given. Preparation of samples and performance of measurements are described.
Resumo:
The long-term rate of racemization for amino acids preserved in planktonic foraminifera was determined by using independently dated sediment cores from the Arctic Ocean. The racemization rates for aspartic acid (Asp) and glutamic acid (Glu) in the common taxon, Neogloboquadrina pachyderma, were calibrated for the last 150 ka using 14C ages and the emerging Quaternary chronostratigraphy of Arctic Ocean sediments. An analysis of errors indicates realistic age uncertainties of about ±12% for Asp and ±17% for Glu. Fifty individual tests are sufficient to analyze multiple subsamples, identify outliers, and derive robust sample mean values. The new age equation can be applied to verify and refine age models for sediment cores elsewhere in the Arctic Ocean, a critical region for understanding the dynamics of global climate change.