895 resultados para Calculated after FOLK


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The formation of calcareous skeletons by marine planktonic organisms and their subsequent sinking to depth generates a continuous rain of calcium carbonate to the deep ocean and underlying sediments. This is important in regulating marine carbon cycling and ocean-atmosphere CO2 exchange. The present rise in atmospheric CO2 levels causes significant changes in surface ocean pH and carbonate chemistry. Such changes have been shown to slow down calcification in corals and coralline macroalgae, but the majority of marine calcification occurs in planktonic organisms. Here we report reduced calcite production at increased CO2 concentrations in monospecific cultures of two dominant marine calcifying phytoplankton species, the coccolithophorids Emiliania huxleyi and Gephyrocapsa oceanica . This was accompanied by an increased proportion of malformed coccoliths and incomplete coccospheres. Diminished calcification led to a reduction in the ratio of calcite precipitation to organic matter production. Similar results were obtained in incubations of natural plankton assemblages from the north Pacific ocean when exposed to experimentally elevated CO2 levels. We suggest that the progressive increase in atmospheric CO2 concentrations may therefore slow down the production of calcium carbonate in the surface ocean. As the process of calcification releases CO2 to the atmosphere, the response observed here could potentially act as a negative feedback on atmospheric CO2 levels.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have measured the stable carbon isotopic composition of bulk organic matter (POC), alkenones, sterols, fatty acids, and phytol in the coccolithophorid Emiliania huxleyi grown in dilute batch cultures over a wide range of CO2 concentrations (1.1-53.5 micromol L-1). The carbon isotope fractionation of POC (POC) varied by ca. 7 per mil and was positively correlated with aqueous CO2 concentration [CO2aq]. While this result confirms general trends observed for the same alga grown in nitrogen-limited chemostat cultures, considerable differences were obtained in absolute values of POC and in the slope of the relationship of POC with growth rate and [CO2aq]. Also, a significantly greater offset was obtained between the delta13C of alkenones and bulk organic matter in this study compared with previous work (5.4, cf. 3.8 per mil). This suggests that the magnitude of the isotope offset may depend on growth conditions. Relative to POC, individual fatty acids were depleted in 13C by 2.3 per mil to 4.1 per mil, phytol was depleted in 13C by 1.9 per mil, and the major sterol 24-methylcholesta-5,22E-dien-3beta-ol was depleted in 13C by 8.5 per mil. This large spread of delta13C values for different lipid classes in the same alga indicates the need for caution in organic geochemical studies when assigning different sources to lipids that might have delta13C values differing by just a few per mil. Increases in [CO2aq] led to dramatic increases in the alkenone contents per cell and as a proportion of organic carbon, but there was no systematic effect on values of U37k- used for reconstructions of paleo sea surface temperature.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A 380 cm long sediment core from Lake Temje (central Yakutia, Eastern Siberia) was studied to infer Holocene palaeoenvironmental change in the extreme periglacial setting of eastern Siberia during the last 10,000 years. Data on sediment composition were used to characterize changes in the depositional environment during the ontogenetic development of the Lake Temje. The analysis of fossil chironomid remains and statistical treatment of chironomid data by the application of a newly developed regional Russian transfer functions provided inferences of mean July air temperatures (T_July) and water depths (WD). Reconstructed WDs show minor changes throughout the core and range between 80 and 120 cm. All the fluctuations in reconstructed water depth lie within the mean error of prediction of the inference model (RMSEP = 0.35) so it is not possible to draw conclusions from the reconstructions. A qualitative and quantitative reconstruction of Holocene climate in central Yakutia recognized three stages of palaeoenvironmental changes. The early Holocene between 10 and 8 ka BP was characterized by colder-than-today and moist summer conditions. Cryotextures in the lake sediments document full freezing of the lake water during the winter time. A general warming trend started around 8.0 ka BP in concert with enhanced biological productivity. Reconstructed mean T_July were equal or up to 1.5 °C higher than today between 6.0 ka and 5.0 ka BP. During the entire late Holocene after 4.8 ka BP, reconstructed mean T_July remained below modern value. Limnological conditions did not change significantly. The inference of a mid-Holocene climate optimum supports scenarios of Holocene climatic changes in the subpolar part of eastern Siberia and indicates climate teleconnections to the North Atlantic realm.