917 resultados para Arctic-Subarctic Ocean Flux Array for European Climate: North
Resumo:
A high-resolution sedimentary record from the subarctic Malangen fjord in northern Norway, northeastern North Atlantic has been investigated in order to reconstruct variations in influx of Atlantic Water for the last 2000 years. The fjord provides a regional oceanographic climatic signal reflecting changes in the North Atlantic heat flux at this latitude because of its deep sill and the relatively narrow adjoining continental shelf. The reconstructions are based on oxygen and carbon isotopic studies of benthic foraminifera from a high accumulation basin in the Malangen fjord, providing subdecadal time resolution. A comparison between instrumental measurements of bottom water temperatures at the core location and the reconstructed temperatures from benthic foraminiferal d18O for the same time period demonstrates that the stable isotope values reflect the bottom water temperatures very well. The reconstructed temperature record shows an overall decline in temperature of c. 1°C from c. 40 BC to ad 1350. This cooling trend is assumed to be driven by an orbital forced reduction in insolation. Superimposed on the general cooling trend are several periods of warmer or colder temperatures. The long-term fluctuations in the Malangen fjord are concurrent with fluctuations of Atlantic Water in the northern North Atlantic. Although they are not directly comparable, comparisons of atmospheric temperatures and marine records, indicate a close coupling between the climate systems. After ad l800 the record shows an unprecedented warming within the last 2000 years.
Resumo:
Recent evidence that dissolved organic carbon (DOC) is a significant component of the organic carbon flux below the photic layer of the ocean (1), together with verification of high respiration rates in the dark ocean (2), suggests that the downward flux of DOC may play a major role in supporting respiration there. Here we show, on the basis of examination of the relation between DOC and apparent oxygen utilization (AOU), that the DOC flux supports ~10% of the respiration in the dark ocean. The contribution of DOC to pelagic respiration below the surface mixed layer can be inferred from the relation between DOC and apparent oxygen utilization (AOU, µM O2), a variable quantifying the cumulative oxygen consumption since a water parcel was last in contact with the atmosphere. However, assessments of DOC/AOU relations have been limited to specific regions of the ocean (3, 4) and have not considered the global ocean. We assembled a large data set (N = 9824) of concurrent DOC and AOU observations collected in cruises conducted throughout the world's oceans (fig. S1, table S1) to examine the relative contribution of DOC to AOU and, therefore, respiration in the dark ocean. AOU increased from an average (±SE) 96.3 ± 2.0 µM at the base of the surface mixed layer (100 m) to 165.5 ± 4.3 µM at the bottom of the main thermocline (1000 m), with a parallel decline in the average DOC from 53.5 ± 0.2 to 43.4 ± 0.3 µM C (Fig. 1). In contrast, there is no significant decline in DOC with increasing depth beyond 1000 m depth (Fig. 1), indicating that DOC exported with overturning circulation plays a minor role in supporting respiration in the ocean interior (5). Assuming a molar respiratory quotient of 0.69, the decline in DOC accounts for 19.6 ± 0.4% of the AOU within the top 1000 m (Fig. 1). This estimate represents, however, an upper limit, because the correlation between DOC and AOU is partly due to mixing of DOC-rich warm surface waters with DOC-poor cold thermocline waters (6). Removal of this effect by regressing DOC against AOU and water temperature indicates that DOC supports only 8.4 ± 0.3% of the respiration in the mesopelagic waters.
Resumo:
We construct age models for a suite of cores from the northeast Atlantic Ocean by means of accelerator mass spectrometer dating of a key core, BOFS 5K, and correlation with the rest of the suite. The effects of bioturbation and foraminiferal species abundance gradients upon the age record are modeled using a simple equation. The degree of bioturbation is estimated by comparing modeled profiles with dispersal of the Vedde Ash layer in core 5K, and we find a mixing depth of roughly 8 cm for sand-sized material. Using this value, we estimate that age offsets between unbioturbated sediment and some foraminifera species after mixing may be up to 2500 years, with lesser effect on fine carbonate (< 10 µm) ages. The bioturbation model illustrates problems associated with the dating of 'instantaneous' events such as ash layers and the 'Heinrich' peaks of ice-rafted detritus. Correlations between core 5K and the other cores from the BOFS suite are made on the basis of similarities in the downcore profiles of oxygen and carbon isotopes, magnetic susceptibility, water and carbonate content, and via marker horizons in X radiographs and ash beds.
Resumo:
This paper reports the concentrations and within-class distributions of long-chain alkenones and alkyl alkenoates in the surface waters (0-50 m) of the eastern North Atlantic, and correlates their abundance and distribution with those of source organisms and with water temperature and other environmental variables. We collected these samples of >0.8 µm particulate material from the euphotic zone along the JGOFS 20°W longitude transect, from 61°N to 24°N, during seven cruises of the UK-JGOFS Biogeochemical Ocean Flux Study (BOFS) in 1989-1991; the biogeographical range of our 53 samples extends from the cold (<10°C), nutrient-rich and highly productive subarctic waters of the Iceland Basin to the warm (>25°C) oligotrophic subtropical waters off Africa. Surface water concentrations of total alkenone and alkenoates ranged from <50 ng/l in oligotrophic waters below 40°N to 2000-4500 ng/l in high latitude E. huxleyi blooms, and were well correlated with E. huxleyi cell densities, supporting the assumption that E. huxleyi is the predominant source of these compounds in the present day North Atlantic. The within-class distribution of the C37 and C38 alkenones and C36 alkenoates varied strongly as a function of temperature, and was largely unaffected by nutrient concentration, bloom status and other surface water properties. The biosynthetic response of the source organisms to growth temperature differed between the cold (<16°C) waters above 47°N and the warmer waters to the south. In cold (<16°C) waters above 47°N, the relative amounts of alkenoates and C38 alkenones synthesized was a strong function of growth temperature, while the unsaturation ratio of the alkenones (C37 and C38) was uncorrelated with temperature. Conversely, in warm (>16°C) waters below 47°N, the relative proportions of alkenoates and alkenones synthesized remained constant with increasing temperature while the unsaturation ratios of the C37 and C38 methyl alkenones (Uk37 and Uk38Me, respectively) increased linearly. The fitted regressions of Uk37 and Uk38Me versus temperature for waters >16°C were both highly significant (r**2 > 0.96) and had identical slopes (0.057) that were 50% higher than the slope (0.034) of the temperature calibration of Uk37 reported by Prahl and Wakeham (1987; doi:10.1038/330367a0) over the same temperature range. These observations suggest either a physiological adjustment in biochemical response to growth temperature above a 16-17°C threshold and/or variation between different E. huxleyi strains and/or related species inhabiting the cold and warm water regions of the eastern North Atlantic. Using our North Atlantic data set, we have produced multivariate temperature calibrations incorporating all major features of the alkenone and alkenoate data set. Predicted temperatures using multivariate calibrations are largely unbiased, with a standard error of approximately ±1°C over the entire data range. In contrast, simpler calibration models cannot adequately incorporate regional diversity and nonlinear trends with temperature. Our results indicate that calibrations based upon single variables, such as Uk37, can be strongly biased by unknown systematic errors arising from natural variability in the biosynthetic response of the source organisms to growth temperature. Multivariate temperature calibration can be expected to give more precise estimates of Integrated Production Temperatures (IPT) in the sedimentary record over a wider range of paleoenvironmental conditions, when derived using a calibration data set incorporating a similar range of natural variability in biosynthetic response.