518 resultados para Alkenones
Resumo:
Sediment core GeoB 1023-5 from the eastern South Atlantic was investigated at high temporal resolution for variations of sea-surface temperature (SST) during the past 22 kyr, using the alkenone (UK'37) method. SSTs increased by 3.5°C from about 18°C during the Last Ice Age (21±2 cal kyr BP) to about 21.5°C at 14.5 cal kyr BP. This warming trend associated with the deglaciation phase was followed by a cooling event with lowest SSTs near 20°C, persisting for about 1000 years between 13 and 12 cal kyr BP. The SSTs then continued to increase to about 22.5°C at the Holocene climatic optimum at 7 cal kyr BP, and decreased again during the Late Holocene to a core-top value of 19.8°C that is comparable to modern annual mean SST values. When compared with alkenone SST records from the eastern North Atlantic, our SST record indicates continuous warming throughout the deglaciation phase in the Benguela Current, while its northern counterpart, the Canary Current, experienced prominent cooling during 'Heinrich Event 1' (H1). On the other hand, for the time period corresponding to the 'Younger Dryas' (YD) cooling event, the Benguela SST record exhibits a cold-temperature interval that corresponds to that observed in the eastern North Atlantic SST records. This observation suggests that interhemispheric climate response in Atlantic eastern boundary current systems was different with respect to the two abrupt climate events associated with Termination I. For the H1, the eastern South Atlantic SST record strongly supports the hypothesis that an 'anti-phase' thermal behavior in South Atlantic surface waters was forced by the slowdown of the North Atlantic Deep Water formation during cold spells in the North Atlantic. In contrast, the abrupt cooling in the eastern South Atlantic coincident with the YD period was probably induced by more vigorous global atmospheric circulation, enhancing the upwelling intensity in both eastern boundary current systems. This atmospheric control may have overridden any effect caused by changes in thermohaline circulation on the South Atlantic SSTs during the YD, which leads to the assumption that the thermohaline circulation was already much closer to its interglacial mode during the YD than during the H1.
Resumo:
Climate conditions in the westernmost Mediterranean (Alboran Sea basin) over the last two millennia have been reconstructed through integration of molecular proxies applied for the first time in this region at such high resolution. Two temperature proxies, one based on isoprenoid membrane lipids of marine Thaumarchaeota (TEXH86-tetraether index of compounds consisting of 86 carbons) and the other on alkenones produced by haptophytes (UK'37 ratio) were applied to reconstruct sea surface temperature (SST). Both records reveal a progressive long term decline in SST over the last two millennia and an increased rate of warming during the second half of the twentieth century. This is in accord with previous temperature reconstructions for the Northern Hemisphere. TEXH86 temperature values are higher than those inferred from UK'37, probably due to differences in the bloom season of haptophytes and Thaumarchaeota, and reflect summer SST. The branched vs. isoprenoid tetraether index (BIT index) suggests a low contribution of soil organic matter (OM) to the sedimentary OM. The stable carbon isotopic composition of long chain n-alkanes indicates a predominant C3 plant contribution, with no major change in vegetation over the last 2000 yr. The distribution of long chain 1,14-diols (most likely sourced by Proboscia species in this setting) provided insight into variation in upwelling conditions during the last 2000 yr and depicts a correlation with the North Atlantic Oscillation (NAO) index, providing evidence of enhanced wind induced upwelling during periods of a persistent positive mode of the NAO.
Resumo:
Sediment samples from the Laptev Sea, taken during the 1993 RV Polarstern expedition ARK IX/4 and the RV Ivan Kireyev expedition TRANSDRIFT I, were investigated for the amount and composition of their organic carbon fractions. Of major interest was the identification of different processes controlling organic carbon deposition (i.e. terrigenous supply vs. surface water productivity). Long-chain unsaturated alkenones derived from prymnesiophytes, and fatty acids derived from diatoms and dinoflagellates, were analysed by means of gas chromatography and mass spectrometry. First results on the distribution of these biomarkers in surface sediments indicate that the surface water productivity signal is well preserved in the sediment data. This is shown by the distribution of the 16:1(n-7) and 20:5(n-3) fatty acids indicative for diatoms, and the excellent correlation with the chlorophyll a concentrations in the surface water masses and the biogenic-opal content and increased hydrogen indices of the sediments. The high concentration of these unsaturated fatty acids in shallow water sediments shows the recent deposition of the organic material. In deep-sea sediments, on the other hand, the concentrations are low. This decreased content is typical for phytoplankton material which has been degraded by microorganisms or autoxidation. In general, the alkenone concentrations are very low, suggesting low production rates by prymnesiophytes. Only at one station from the lower continental margin influenced by the inflow of Atlantic water masses, were some higher amounts of alkenones determined. Long-chain n-alkanes as well as high C/N ratios and low hydrogen indices indicate the importance of (fluvial) supply of terrigenous organic matter.
Resumo:
Alkenone-based Cenozoic records of the partial pressure of atmospheric carbon dioxide (pCO2) are founded on the carbon isotope fractionation that occurred during marine photosynthesis (epsilon [p37:2]). However, the magnitude of epsilon [p37:2] is also influenced by phytoplankton cell size - a consideration lacking in previous alkenone-based CO2 estimates. In this study, we reconstruct cell size trends in ancient alkenone-producing coccolithophores (the reticulofenestrids) to test the influence that cell size variability played in determining epsilon [p37:2] trends and pCO2 estimates during the middle Eocene to early Miocene. At the investigated deep-sea sites, the reticulofenestrids experienced high diversity and largest mean cell sizes during the late Eocene, followed by a long-term decrease in maximum cell size since the earliest Oligocene. Decreasing haptophyte cell sizes do not account for the long-term increase in the stable carbon isotopic composition of alkenones and associated decrease in epsilon [p37:2] values during the Paleogene, supporting the conclusion that the secular pattern of epsilon [p37:2] values is primarily controlled by decreasing CO2 concentration since the earliest Oligocene. Further, given the physiology of modern alkenone producers, and considering the timings of coccolithophorid cell size change, extinctions, and changes in reconstructed pCO2 and temperature, we speculate that the selection of smaller reticulofenestrid cells during the Oligocene primarily reflects an adaptive response to increased [CO2(aq)] limitation.
Resumo:
We compare a new mid-Pleistocene sea surface temperature (SST) record from the eastern tropical Atlantic to changes in continental ice volume, orbital insolation, Atlantic deepwater ventilation, and Southern Ocean front positions to resolve forcing mechanisms of tropical Atlantic SST during the mid-Pleistocene transition (MPT). At the onset of the MPT, a strong tropical cooling occurred. The change from a obliquity- to a eccentricity-dominated cyclicity in the tropical SST took place at about 650 kyr BP. In orbital cycles, tropical SST changes significantly preceded continental ice-volume changes but were in phase with movements of Southern Ocean fronts. After the onset of large-amplitude 100-kyr variations, additional late glacial warming in the eastern tropical Atlantic was caused by enhanced return flow of warm waters from the western Atlantic driven by strong trade winds. Pronounced 80-kyr variations in tropical SST occurred during the MPT, in phase with and likely directly forced by transitional continental ice-volume variations. During the MPT, a prominent anomalous long-term tropical warming occurred, likely generated by extremely northward displaced Southern Ocean fronts. While the overall pattern of global climate variability during the MPT was determined by changes in mean state and frequency of continental ice volume variations, tropical Atlantic SST variations were primarily driven by early changes in Subantarctic sea-ice extent and coupled Southern Ocean frontal positions.
Resumo:
This study investigates organic-rich sedimentary sequences deposited during the early Aptian Oceanic Anoxic Event (OAE1a) at Sites 1207 and 1213 on Shatsky Rise (ODP Leg 198) in the west-central Pacific. Biomarker analyses provide evidence of the algal and bacterial origin of organic matter (OM) in these sediments where the abundance of steroidal components, particularly sterenes and sterones, suggests that the OM includes major contributions from eukaryotic sources in an environment characterized by high phytoplankton productivity. The presence of alkenones at Site 1213B is diagnostic of OM derived from representatives of haptophyte algae among the calcareous nannoplankton and their d13C values (average -31.6 per mil) are consistent with those expected during elevated pCO2. The occurrence and prominence of 2b-methylhopanes and 2b-methylhopanones indicates significant contributions to the OM from cyanobacteria, which are also likely contributors of hopanoids based on their d13C compositions. These biomarker data suggest that oceanic conditions, perhaps nitrate- or iron-limited, were conducive to cyanobacteria production during OAE1a, which appears to distinguish this event from other Cretaceous OAE.
Resumo:
The timing and magnitude of sea-surface temperature (SST) changes in the tropical southern South China Sea (SCS) during the last 16,500 years have been reconstructed on a high-resolution, 14C-dated sediment core using three different foraminiferal transfer functions (SIMMAX28, RAM, FP-12E) and geochemical (Uk'37) SST estimates. In agreement with CLIMAP reconstructions, both the FP-12E and the Uk'37 SST estimates show an average late glacial-interglacial SST difference of 2.0°C, whereas the RAM and SIMMAX28 foraminiferal transfer functions show only a minor (0.6°C) or no consistent late glacial-interglacial SST change, respectively. Both the Uk'37 and the FP-12E SST estimates, as well as the planktonic foraminiferal delta18O values, indicate an abrupt warming (ca. 1°C in <200 yr) at the end of the last glaciation, synchronous (within dating uncertainties) with the Bølling transition as recorded in the Greenland Ice Sheet Project 2 (GISP2) ice core, whereas the RAM-derived deglacial SST increase appears to lag during this event by ca. 500 yr. The similarity in abruptness and timing of the warming associated with the Bølling transition in Greenland and the southern SCS suggest a true synchrony of the Northern Hemisphere warming at the end of the last glaciation. In contrast to the foraminiferal transfer function estimates that do not indicate any consistent cooling associated with the Younger Dryas (YD) climate event in the tropical SCS, the Uk'37 SST estimates show a cooling of ca. 0.2-0.6°C compared to the Bølling-Allerød period. These Uk'37 SST estimates from the southern SCS argue in favor of a Northern Hemisphere-wide, synchronous cooling during the YD period.
Resumo:
Suborbital climate variability during the last glacial period is suggested to have involved a 1500-year pacing cycle, but the expression and spatial distribution of the ~1500-year oscillation during interglacials remains unclear. We generated a multidecade resolution record of alkenone sea surface temperature (SST) in the northwestern Pacific off central Japan during the Holocene. The SST record showed centennial and millennial variability with an amplitude of ~1 °C throughout the entire Holocene. Spectral analysis for SST variation revealed a statistically significant peak with 1470-year periodicity. The SST variation partly correlated with the variations of ice-rafted hematite-stained grain content in North Atlantic sediments. These findings indicate that the mean latitude of the Kuroshio Extension has varied on a 1500-year cycle, and suggest that a climatic link exists between the North Pacific gyre system and the high-latitude North Atlantic thermohaline circulation. The regular pacing at 1500-year intervals seen throughout both the Holocene and the last glacial period suggests that the oscillation was a response to external forcing.
Resumo:
In order to investigate a possible link between tropical Northeast (NE) Atlantic sea-surface temperature (SST), Atlantic meridional overturning circulation (AMOC), and drought in the Sahel during the past 44 thousand years (kyr) we used alkenone paleothermometry and d13C of C. wuellerstorfi of a marine sediment core from the continental slope off Senegal. Our data show periods of low SST and reduced AMOC that coincided with drought in the Sahel during North Atlantic Heinrich stadials (HS). The coldest period was HS1 (ca. 15-18 kyr before present, BP) when SST decreased by more than 2°C. Moreover, the SST off Senegal lagged variations in Sahel aridity, which is in agreement with results from a freshwater hosing experiment. We conclude that variations in tropical NE Atlantic SST were not the initial trigger of millennial-scale Sahel droughts of the past 44 kyr. Instead, it is thought that these droughts were induced by substantial coolings of the extratropical North Atlantic.
Resumo:
We analysed long-chain alkenones in sinking particles and surface sediments from the filamentous upwelling region off Cape Blanc, NW Africa, to evaluate the transfer of surface water signals into the geological record. Our study is based on time-series sediment trap records from 730 m (1990-1991) to 2195-3562 m depth (1988-1991). Alkenone fluxes showed considerable interannual variations and no consistent seasonality. The average flux of C37 and C38 alkenones to the deep traps was 1.9 µg/m**2/d from March 1988 to October 1990 and sevenfold higher in the subsequent year. Alkenone fluxes to the shallower traps were on average twice as high and showed similar temporal variations. The alkenone unsaturation indices UK'37, UK38Me and UK38Et closely mirrored the seasonal variations in sea-surface temperature (weekly Reynolds SST). Time lags of 10-48 days between the SST and unsaturation maxima suggest particle sinking rates of about 80 and 280 m/d for the periods of low and high alkenone fluxes, respectively. The average flux-weighted UK'37 temperature for the 4-year time series of the deeper traps was 22.1°C, in perfect agreement with the mean weekly SST for the same period. This and the comparison with seasonal temperature variations in the upper 100 m of the water column suggests that UK'37 records principally the yearly average of the mixed-layer temperature in this region. A comparison between the average annual alkenone fluxes to the lower traps (2400 µg/m**2/yr) and into the underlying sediments (4 µg/m**2/yr) suggests that only about 0.2% of the alkenones reaching the deep ocean became preserved in the sediments. The flux-weighted alkenone concentrations also decreased considerably, from 2466 µg/gC in the water column to 62 µg/gC in the surface sediments. Such a low degree of alkenone preservation is typical for slowly accumulating oxygenated sediments. Despite these dramatic diagenetic alkenone losses, the UK'37 ratio was not affected. The average UK'37 value of the sediments (0.796±0.010 or 22.3±0.3°C) was identical within error limits to the 4-year average of the lower traps. The unsaturation indices for C38 alkenones and the ratio between C37 and C38 alkenones also revealed a high degree of stability. Our results do not support the hypothesis that UK'37 is biased towards higher values during oxic diagenesis.