461 resultados para 168-1023
Resumo:
Fe-Mn-concretions of a spheroidal type were found according to electron probe determinations to consist of alternating iron- and manganese-rich layers. This pattern was ascribed to seasonal variations in the physico-chemical conditions governing the precipitation of the hydrous oxides of iron and manganese. Calculations based on the rhythmic growth of the concretions investigated gave a mean accumulation rate of 0.15-0.20 mm/yr. The rather high phosphorus content (average 3.5 % P2O5) of the concretions was found to be concentrated in the iron-rich layers, probably as a result of the scavenging effect of ferric hydroxide.
Resumo:
During Leg 168 a transect was drilled across the eastern flank of the Juan de Fuca Ridge in an area where the volcanic basement is covered by sediments of variable thickness. Samples of basement volcanic rocks were recovered from nine locations along the transect, where the basement sediment interface is presently heated to temperatures varying from 15° to 64°C. Altered rocks with secondary calcium carbonate were common at four of the sites, where present-day temperatures range from 38° to 64°C. Fluid inclusions in aragonite suggest that the mineral precipitated from an aqueous fluid of seawater salinity at temperatures well below 100°C. The chemical compositions of secondary calcite and aragonite were determined with both an electron microprobe and a laser-ablation inductively coupled plasma-mass spectroscopy (LA-ICP-MS) microprobe. These two techniques yielded consistent analyses of the same minor elements (Mg and Sr) in the same specimens. The combined results show that secondary aragonites contain very little Mg, Mn, Fe, Co, Ni, Cu, Zn, Rb, La, Ce, Pb, or U, yet they contain significant Sr. In contrast, secondary calcites contain significant Mg, Mn, Fe, Ni, Cu, Zn, and Pb, yet very little Co, Rb, Sr, La, Ce, or U. Secondary calcium carbonates provide subseafloor reservoirs for some minor and trace elements. Replacement of aragonite by calcite should result in a release of Sr, Rb, and Zn to solution, and it provides a sink for Mg, Mn, Ni, Cu, Zn, and Pb.