562 resultados para Swash zone sediment transport
Resumo:
The magnitude of Late Holocene climatic variations are less significant than those that took place during ice ages and deglaciations. However, detailed knowledge about this period is vital in order to understand and model future climate scenarios both as a result of natural climate variation and the effects of global warming. Oceanic heat flux is important for the sensitive climate regime of northern Europe. Our aim is to connect hydrographical changes, reflected by the dinoflagellates cyst (dinocysts) assemblages in the sediments in the Malangen fjord, to local and regional climatic phases. Previous studies have shown that dinocyst assemblages are influenced by temperature, salinity, and the availability of nutrients (e.g. de Vernal et al. 2005, doi:10.1016/j.quascirev.2004.06.014; de Vernal et al. 2001, doi:10.1002/jqs.659; Grosfjeld et al. this volume; Rochon et al. 2008, doi:10.1016/j.marmicro.2008.04.001; Solignac et al. this volume). Dinoflagellates are mostly unicellular organisms that make up one of the main groups of phytoplankton. They are able to regulate their depth within the photic zone and to concentrate along oceanic fronts, which provide nutrient-enriched waters. The dinoflagellate cysts are the hypnozygotes of dinoflagellates naturally produced during the life cycle. Their wall is composed of a highly resistant organic material, which has a high potential to fossilize. Because dinocysts species are linked to particular abiotic and biotic parameters, the dinocyst assemblages provide information about past surface water conditions. Since each fjord has its own hydrographic setting, it is necessary to establish a firm link between the dinocyst composition of the sediment surface samples and the surface water conditions. Indeed the modern dinocyst distribution in subarctic fjords is little known. Thus, in addition to detailing dinocyst results from two shallow cores, several sediment surface samples located along a transect running from the head to the mouth of the fjord, and extending onto the shelf, are also presented.
Resumo:
Understanding past human-climate-environment interactions is essential for assessing the vulnerability of landscapes and ecosystems to future climate change. This is particularly important in southern Morocco where the current vegetation is impacted by pastoralism, and the region is highly sensitive to climate variability. Here, we present a 2000-year record of vegetation, sedimentation rate, XRF chemical element intensities, and particle size from two decadal-resolved, marine sediment cores, raised from offshore Cape Ghir, southern Morocco. The results show that between 650 and 850 AD the sedimentation rate increased dramatically from 100 cm/1000 years to 300 cm/1000 years, and the Fe/Ca and pollen flux doubled, together indicating higher inputs of terrestrial sediment. Particle size measurements and end-member modelling suggest increased fluvial transport of the sediment. Beginning at 650 AD pollen levels from Cichorioideae species show a sharp rise from 10% to 20%. Pollen from Atemisia and Plantago, also increase from this time. Deciduous oak pollen percentages show a decline, whereas those of evergreen oak barely change. The abrupt increase in terrestrial/fluvial input from 650 to 850 AD occurs, within the age uncertainty, of the arrival of Islam (Islamisation) in Morocco at around 700 AD. Historical evidence suggests Islamisation led to population increase and development of southern Morocco, including expanded pastoralism, deforestation and agriculture. Livestock pressure may have changed the vegetation structure, accounting for the increase in pollen from Cichorioideae, Plantago, and Artemisia, which include many weedy species. Goats in particular may have played a dominant role as agents of erosion, and intense browsing may have led to the decline in deciduous oak; evergreen oak is more likely to survive as it re-sprouts more vigorously after browsing. From 850 AD to present sedimentation rates, Fe/Ca ratios and fluvial discharge remain stable, whereas pollen results suggest continued degradation. Pollen results from the past 150 years suggest expanded cultivation of olives and the native argan tree, and the introduction of Australian eucalyptus trees. The rapidly increasing population in southern Morocco is causing continued pressure to expand pastoralism and agriculture. The history of land degradation presented here suggests that the vegetation in southern Morocco may have been degraded for a longer period than previously thought and may be particularly sensitive to further land use changes. These results should be included in land management strategies for southern Morocco.
Resumo:
Quantitative study of benthic foraminifers from the upper Miocene to lower Pliocene section at Site 612 (1404 m present water depth) and the Pliocene section at Site 613 (2323 m present water depth) shows no evidence of widespread downslope transport of shallow-water biofacies or reworking of older material in the greater than 150 µm size fraction. In contrast, upper Miocene sediments from Site 604 (2364 m present water depth) show extensive reworking and downslope transport. At Site 612, benthic foraminifers show a succession from an upper Miocene Bolivina alata-Nonionella sp. biofacies, to an uppermost Miocene Bulimina alazanensis biofacies, to a lower Pliocene Cassidulina reflexa biofacies, to an upper Pliocene Melonis barleeanum-Islandiella laevigata biofacies. Evidence suggests that the Pliocene biofacies are in situ, although they could have been transported downslope from the upper-middle bathyal zone. At Site 613, Uvigerina peregrina dominated the "middle" Pliocene, while Globocassidulina subglobosa was dominant in the early and late Pliocene. High abundances of U. peregrina at Site 613 are associated with high values of sedimentary organic carbon.
Resumo:
Very fine quartz sand was examined from Paleogene and Neogene sediments of ODP Sites 693, 694, 695, 696, and 697 to determine their grain roundness using Fourier analysis and SEM surface texture characteristics. The objective of this study was to identify grain roundness and surface texture characteristics unique to East (Site 693) and West (Sites 695, 696, and 697) Antarctica and to glacial regimes. Once identified, these distinguishing features could then be used to determine changes in source area and glacial conditions in the central Weddell Sea Basin (Site 694). Three end members of very fine quartz sand are recognized in the Oligocene to Pleistocene sediments of the Weddell Sea: angular, rounded, and intermediate. End member 1 (angular) consists of extremely angular grains with numerous fracture textures. Previous investigations suggested that these sands are derived from crystalline rocks that fractured during formation or deformation and/or were exposed to weathering by ice. In this study, however, the correlation of angularity with ice activity is problematical as the most angular sands were recovered in the lower Oligocene sediments of the South Orkney Microcontinent, a period of temperate climatic conditions. End member 3 (rounded) consists of rounded grains with chemically and mechanically produced surface textures. These sands are presumed to be derived from the Beacon-type rocks in East Antarctica and the sedimentary deposits of the Northern Antarctic Peninsula. End member 2 (intermediate) grains display crystalline nodes and grain embayments. They are thought to be derived from felsic intrusives, East Antarctic quartzites, basement metamorphics of the South Orkney Microcontinent, and/or the Andean intrusive series of West Antarctica. Unfortunately, no features unique to either the East or West Antarctic sediment sources or to glacial conditions could be isolated. Therefore, the objective of determining provenance changes and sediment erosion and transport mechanisms could not be achieved using this approach.
Resumo:
In order to document changes in Holocene glacier extent and activity in NE Greenland (~73° N) we study marine sediment records that extend from the fjords (PS2631 and PS2640), across the shelf (PS2623 and PS2641), to the Greenland Sea (JM07-174GC). The primary bedrock geology of the source areas is the Caledonian sediment outcrop, including Devonian red beds, plus early Neoproterozoic gneisses and early Tertiary volcanics. We examine the variations in colour (CIE*), grain size, and bulk mineralogy (from X-ray diffraction of the <2 mm sediment fraction). Fjord core PS2640 in Sofia Sund, with a marked red hue, is distinct in grain size, colour and mineralogy from the other fjord and shelf cores. Five distinct grain-size modes are distinguished of which only one is associated with a coarse ice-rafting signal - this mode is rare in the mid- and late Holocene. A sediment unmixing program (SedUnMixMC) is used to characterize down-core changes in sediment composition based on the upper late Holocene sediments from cores PS2640 (Sofia Sund), PS2631 (Kaiser Franz Joseph Fjord) and PS2623 (south of Shannon Is), and surface samples from the Kara Sea (as an indicator of transport from the Russian Arctic shelves). Major changes in mineral composition are noted in all cores with possible coeval shifts centred c. 2.5, 4.5 and 7.5 cal. ka BP (±0.5 ka) but are rarely linked with changes in the grain-size spectra. Coarse IRD (>2 mm) and IRD-grain-size spectra are rare in the last 9-10 cal. ka BP and, in contrast with areas farther south (~68° N), there is no distinct IRD signal at the onset of neoglaciation. Our paper demonstrates the importance of the quantitative analysis of sediment properties in clarifying source to sink changes in glacial marine environments.
Resumo:
Thermokarst lakes are typical features of the northern permafrost ecosystems, and play an important role in the thermal exchange between atmosphere and subsurface. The objective of this study is to describe the main thermal processes of the lakes and to quantify the heat exchange with the underlying sediments. The thermal regimes of five lakes located within the continuous permafrost zone of northern Siberia (Lena River Delta) were investigated using hourly water temperature and water level records covering a 3-year period (2009-2012), together with bathymetric survey data. The lakes included thermokarst lakes located on Holocene river terraces that may be connected to Lena River water during spring flooding, and a thermokarst lake located on deposits of the Pleistocene Ice Complex. Lakes were covered by ice up to 2 m thick that persisted for more than 7 months of the year, from October until about mid-June. Lake-bottom temperatures increased at the start of the ice-covered period due to upward-directed heat flux from the underlying thawed sediment. Prior to ice break-up, solar radiation effectively warmed the water beneath the ice cover and induced convective mixing. Ice break-up started at the beginning of June and lasted until the middle or end of June. Mixing occurred within the entire water column from the start of ice break-up and continued during the ice-free periods, as confirmed by the Wedderburn numbers, a quantitative measure of the balance between wind mixing and stratification that is important for describing the biogeochemical cycles of lakes. The lake thermal regime was modeled numerically using the FLake model. The model demonstrated good agreement with observations with regard to the mean lake temperature, with a good reproduction of the summer stratification during the ice-free period, but poor agreement during the ice-covered period. Modeled sensitivity to lake depth demonstrated that lakes in this climatic zone with mean depths > 5 m develop continuous stratification in summer for at least 1 month. The modeled vertical heat flux across the bottom sediment tends towards an annual mean of zero, with maximum downward fluxes of about 5 W/m**2 in summer and with heat released back into the water column at a rate of less than 1 W/m**2 during the ice-covered period. The lakes are shown to be efficient heat absorbers and effectively distribute the heat through mixing. Monthly bottom water temperatures during the ice-free period range up to 15 °C and are therefore higher than the associated monthly air or ground temperatures in the surrounding frozen permafrost landscape. The investigated lakes remain unfrozen at depth, with mean annual lake-bottom temperatures of between 2.7 and 4 °C.
Resumo:
An extensive submarine cold-seep area was discovered on the northern shelf of South Georgia during R/V Polarstern cruise ANT-XXIX/4 in spring 2013. Hydroacoustic surveys documented the presence of 133 gas bubble emissions, which were restricted to glacially-formed fjords and troughs. Video-based sea floor observations confirmed the sea floor origin of the gas emissions and spatially related microbial mats. Effective methane transport from these emissions into the hydrosphere was proven by relative enrichments of dissolved methane in near-bottom waters. Stable carbon isotopic signatures pointed to a predominant microbial methane formation, presumably based on high organic matter sedimentation in this region. Although known from many continental margins in the world's oceans, this is the first report of an active area of methane seepage in the Southern Ocean. Our finding of substantial methane emission related to a trough and fjord system, a topographical setting that exists commonly in glacially-affected areas, opens up the possibility that methane seepage is a more widespread phenomenon in polar and sub-polar regions than previously thought.