803 resultados para Modular Integrated Utility Systems Program
Resumo:
Despite its importance in the global climate system, age-calibrated marine geologic records reflecting the evolution of glacial cycles through the Pleistocene are largely absent from the central Arctic Ocean. This is especially true for sediments older than 200 ka. Three sites cored during the Integrated Ocean Drilling Program's Expedition 302, the Arctic Coring Expedition (ACEX), provide a 27 m continuous sedimentary section from the Lomonosov Ridge in the central Arctic Ocean. Two key biostratigraphic datums and constraints from the magnetic inclination data are used to anchor the chronology of these sediments back to the base of the Cobb Mountain subchron (1215 ka). Beyond 1215 ka, two best fitting geomagnetic models are used to investigate the nature of cyclostratigraphic change. Within this chronology we show that bulk and mineral magnetic properties of the sediments vary on predicted Milankovitch frequencies. These cyclic variations record "glacial" and "interglacial" modes of sediment deposition on the Lomonosov Ridge as evident in studies of ice-rafted debris and stable isotopic and faunal assemblages for the last two glacial cycles and were used to tune the age model. Potential errors, which largely arise from uncertainties in the nature of downhole paleomagnetic variability, and the choice of a tuning target are handled by defining an error envelope that is based on the best fitting cyclostratigraphic and geomagnetic solutions.
Resumo:
We characterize the textural and geochemical features of ocean crustal zircon recovered from plagiogranite, evolved gabbro, and metamorphosed ultramafic host-rocks collected along present-day slow and ultraslow spreading mid-ocean ridges (MORs). The geochemistry of 267 zircon grains was measured by sensitive high-resolution ion microprobe-reverse geometry at the USGS-Stanford Ion Microprobe facility. Three types of zircon are recognized based on texture and geochemistry. Most ocean crustal zircons resemble young magmatic zircon from other crustal settings, occurring as pristine, colorless euhedral (Type 1) or subhedral to anhedral (Type 2) grains. In these grains, Hf and most trace elements vary systematically with Ti, typically becoming enriched with falling Ti-in-zircon temperature. Ti-in-zircon temperatures range from 1,040 to 660°C (corrected for a TiO2 ~ 0.7, a SiO2 ~ 1.0, pressure ~ 2 kbar); intra-sample variation is typically ~60-15°C. Decreasing Ti correlates with enrichment in Hf to ~2 wt%, while additional Hf-enrichment occurs at relatively constant temperature. Trends between Ti and U, Y, REE, and Eu/Eu* exhibit a similar inflection, which may denote the onset of eutectic crystallization; the inflection is well-defined by zircons from plagiogranite and implies solidus temperatures of ~680-740°C. A third type of zircon is defined as being porous and colored with chaotic CL zoning, and occurs in ~25% of rock samples studied. These features, along with high measured La, Cl, S, Ca, and Fe, and low (Sm/La)N ratios are suggestive of interaction with aqueous fluids. Non-porous, luminescent CL overgrowth rims on porous grains record uniform temperatures averaging 615 ± 26°C (2SD, n = 7), implying zircon formation below the wet-granite solidus and under water-saturated conditions. Zircon geochemistry reflects, in part, source region; elevated HREE coupled with low U concentrations allow effective discrimination of ~80% of zircon formed at modern MORs from zircon in continental crust. The geochemistry and textural observations reported here serve as an important database for comparison with detrital, xenocrystic, and metamorphosed mafic rock-hosted zircon populations to evaluate provenance.
Resumo:
Expedition 311 of the Integrated Ocean Drilling Program (IODP) to northern Cascadia recovered gas-hydrate bearing sediments along a SW-NE transect from the first ridge of the accretionary margin to the eastward limit of gas-hydrate stability. In this study we contrast the gas gas-hydrate distribution from two sites drilled ~ 8 km apart in different tectonic settings. At Site U1325, drilled on a depositional basin with nearly horizontal sedimentary sequences, the gas-hydrate distribution shows a trend of increasing saturation toward the base of gas-hydrate stability, consistent with several model simulations in the literature. Site U1326 was drilled on an uplifted ridge characterized by faulting, which has likely experienced some mass wasting events. Here the gas hydrate does not show a clear depth-distribution trend, the highest gas-hydrate saturation occurs well within the gas-hydrate stability zone at the shallow depth of ~ 49 mbsf. Sediments at both sites are characterized by abundant coarse-grained (sand) layers up to 23 cm in thickness, and are interspaced within fine-grained (clay and silty clay) detrital sediments. The gas-hydrate distribution is punctuated by localized depth intervals of high gas-hydrate saturation, which preferentially occur in the coarse-grained horizons and occupy up to 60% of the pore space at Site U1325 and > 80% at Site U1326. Detailed analyses of contiguous samples of different lithologies show that when enough methane is present, about 90% of the variance in gas-hydrate saturation can be explained by the sand (> 63 µm) content of the sediments. The variability in gas-hydrate occupancy of sandy horizons at Site U1326 reflects an insufficient methane supply to the sediment section between 190 and 245 mbsf.
Resumo:
The Integrated Ocean Drilling Program Expedition 318 to the Wilkes Land margin of Antarctica recovered a sedimentary succession ranging in age from lower Eocene to the Holocene. Excellent stratigraphic control is key to understanding the timing of paleoceanographic events through critical climate intervals. Drill sites recovered the lower and middle Eocene, nearly the entire Oligocene, the Miocene from about 17 Ma, the entire Pliocene and much of the Pleistocene. The paleomagnetic properties are generally suitable for magnetostratigraphic interpretation, with well-behaved demagnetization diagrams, uniform distribution of declinations, and a clear separation into two inclination modes. Although the sequences were discontinuously recovered with many gaps due to coring, and there are hiatuses from sedimentary and tectonic processes, the magnetostratigraphic patterns are in general readily interpretable. Our interpretations are integrated with the diatom, radiolarian, calcareous nannofossils and dinoflagellate cyst (dinocyst) biostratigraphy. The magnetostratigraphy significantly improves the resolution of the chronostratigraphy, particularly in intervals with poor biostratigraphic control. However, Southern Ocean records with reliable magnetostratigraphies are notably scarce, and the data reported here provide an opportunity for improved calibration of the biostratigraphic records. In particular, we provide a rare magnetostratigraphic calibration for dinocyst biostratigraphy in the Paleogene and a substantially improved diatom calibration for the Pliocene. This paper presents the stratigraphic framework for future paleoceanographic proxy records which are being developed for the Wilkes Land margin cores. It further provides tight constraints on the duration of regional hiatuses inferred from seismic surveys of the region.
Resumo:
During the six Heinrich Events of the last 70 ka episodic calving from the circum-Atlantic ice sheets released large numbers of icebergs into the North Atlantic. These icebergs and associated melt-water flux are hypothesized to have led to a shutdown of Atlantic Meridional Overturning Circulation (AMOC) and severe cooling in large parts of the Northern Hemisphere. However, due to the limited availability of high-resolution records the magnitude sea surface temperature (SST) changes related to the impact of Heinrich Events on the mid-latitude North Atlantic is poorly constrained. Here we present a record of UK37'-based SSTs derived from sediments of Integrated Ocean Drilling Project (IODP) Site U1313, located at the southern end of the ice-rafted debris (IRD)-belt in the mid-latitude North Atlantic (41°N). We demonstrate that all six Heinrich Events are associated with a rapid warming of surface waters by 2 to 4°C in a few thousand years. The presence of IRD leaves no doubt about the simultaneous timing and correlation between rapid surface water warming and Heinrich Events. We argue that this warming in the mid-latitude North Atlantic is related to a northward expansion of the subtropical gyre during Heinrich Events. As a wide-range of studies demonstrated that in the central IRD-belt Heinrich Events are associated with low SSTs, these results thus identify an anti-phased (seesaw) pattern in SSTs during Heinrich Events between the mid-latitude (warm) and northern North Atlantic (cold). This highlights the complex response of surface water characteristics in the North Atlantic to Heinrich Events that is poorly reproduced by fresh water hosing experiments and challenges the widely accepted view that within the IRD-belt of the North Atlantic Heinrich Events coincide with periods of low SSTs.
Resumo:
How the micro-scale fabric of clay-rich mudstone evolves during consolidation in early burial is critical to how they are interpreted in the deeper portions of sedimentary basins. Core samples from the Integrated Ocean Drilling Program Expedition 308, Ursa Basin, Gulf of Mexico, covering seafloor to 600 meters below sea floor (mbsf) are ideal for studying the micro-scale fabric of mudstones. Mudstones of consistent composition and grain size decrease in porosity from 80% at the seafloor to 37% at 600 mbsf. Argon-ion milling produces flat surfaces to image this pore evolution over a vertical effective stress range of 0.25 (71 mbsf) to 4.05 MPa (597 mbsf). With increasing burial, pores become elongated, mean pore size decreases, and there is preferential loss of the largest pores. There is a small increase in clay mineral preferred orientation as recorded by high resolution X-ray goniometry with burial.
Resumo:
Integrated Ocean Drilling Program (IODP) Site U1314 of the North Atlantic is a critical sedimentary archive record of subpolar deep water from the southern Gardar Drift for which we derived an age model of orbital resolution for the last 1.8 Ma. This chronology combined with high-resolution (cm scale) X-ray fluorescence core scanning measurements of major elements allows tracking changes in terrigenous provenance during the last 1.1 Ma. Low Potassium to Titanium (K/Ti) ratios reflect enhanced transport of basalt-derived titanomagnetites during warm climate intervals, while high K/Ti ratios indicate a dominance of acidic sediment sources typical for glacial and stadial events. Changes in K/Ti and magnetic concentration at Site 1314 are coeval with fluctuations in smectite content and grain size data from nearby piston cores, suggesting that the provenance changes are mainly controlled by variable flow of the Iceland-Scotland Overflow Water, an important branch of North Atlantic Deep Water. Furthermore, K/Ti variations on orbital time scales show a striking similarity to the deep sea d13C record from ODP Site 607. Pervasive features of the K/Ti time series during and after the Mid-Pleistocene Transition are suborbital changes similar to Dansgaard/Oeschger and Bond oscillations that appear to be strongly amplified during ice growth phases when global benthic d18O was within the range of ~4.1-4.6 per mil. The strong increase in variability of sediment provenance and subsequently deep hydrography at benthic d18O values below ~4.1 suggests that the extent of glaciations and, therefore, sea level corresponding to this value constitutes an important physical threshold that was persistent at least for the last 1.1 Ma.