513 resultados para Late early Oligocene
Resumo:
Five sections drilled in multiple holes over a depth transect of more than 2200 m at the Walvis Ridge (SE Atlantic) during Ocean Drilling Program (ODP) Leg 208 resulted in the first complete early Paleogene deep-sea record. Here we present high-resolution stratigraphic records spanning a ~4.3 million yearlong interval of the late Paleocene to early Eocene. This interval includes the Paleocene-Eocene thermal maximum (PETM) as well as the Eocene thermal maximum (ETM) 2 event. A detailed chronology was developed with nondestructive X-ray fluorescence (XRF) core scanning records and shipboard color data. These records were used to refine the shipboard-derived spliced composite depth for each site and with a record from ODP Site 1051 were then used to establish a continuous time series over this interval. Extensive spectral analysis reveals that the early Paleogene sedimentary cyclicity is dominated by precession modulated by the short (100 kyr) and long (405 kyr) eccentricity cycles. Counting of precession-related cycles at multiple sites results in revised estimates for the duration of magnetochrons C24r and C25n. Direct comparison between the amplitude modulation of the precession component derived from XRF data and recent models of Earth's orbital eccentricity suggests that the onset of the PETM and ETM2 are related to a 100-kyr eccentricity maximum. Both events are approximately a quarter of a period offset from a maximum in the 405-kyr eccentricity cycle, with the major difference that the PETM is lagging and ETM2 is leading a 405-kyr eccentricity maximum. Absolute age estimates for the PETM, ETM2, and the magnetochron boundaries that are consistent with recalibrated radiometric ages and recent models of Earth's orbital eccentricity cannot be precisely determined at present because of too large uncertainties in these methods. Nevertheless, we provide two possible tuning options, which demonstrate the potential for the development of a cyclostratigraphic framework based on the stable 405-kyr eccentricity cycle for the entire Paleogene.
Resumo:
During Leg 125 of the Ocean Drilling Program, nine sites were drilled in the Mariana and Izu-Bonin areas. The sediments recovered range in age from early Pliocene to late Pleistocene in the Mariana Region and from middle Eocene to late Pleistocene in the Izu-Bonin region. This contribution concerns the biostratigraphic study of the latest Miocene (CN9b Subzone) to late Pleistocene interval. Aquantitative analysis of all calcareous nannofossil associations was conducted for the interval encompassing late Miocene to the top of the early Pliocene. Moreover, the genera Discoaster, Amaurolithus, and Ceratolithus were quantitatively investigated from the late Miocene to late Pliocene interval. Some bioevents were identified, and variations in the composition of assemblages were linked to climatic changes.
Resumo:
Neodymium isotopes of fish debris from two sites on Demerara Rise, spanning ~4.5 m.y. of deposition from the early Cenomanian to just before ocean anoxic event 2 (OAE2) (Cenomanian-Turonian transition), suggest a circulation-controlled nutrient trap in intermediate waters of the western tropical North Atlantic that could explain continuous deposition of organic-rich black shales for as many as ~15 m.y. (Cenomanian-early Santonian). Unusually low Nd isotopic data (epsilon-Nd(t) ~-11 to ~-16) on Demerara Rise during the Cenomanian are confirmed, but the shallower site generally exhibits higher and more variable values. A scenario in which southwest-flowing Tethyan and/or North Atlantic waters overrode warm, saline Demerara bottom water explains the isotopic differences between sites and could create a dynamic nutrient trap controlled by circulation patterns in the absence of topographic barriers. Nutrient trapping, in turn, would explain the ~15 m.y. deposition of black shales through positive feedbacks between low oxygen and nutrient-rich bottom waters, efficient phosphate recycling, transport of nutrients to the surface, high productivity, and organic carbon export to the seafloor. This nutrient trap and the correlation seen previously between high Nd and organic carbon isotopic values during OAE2 on Demerara Rise suggest that physical oceanographic changes could be components of OAE2, one of the largest perturbations to the global carbon cycle in the past 150 m.y.
Resumo:
Ocean Drilling Program Hole 803D (Leg 130) from the western tropical Pacific (Ontong Java Plateau) and Hole 628A (Leg 101) from the western subtropical North Atlantic (Little Bahama Bank) contain rich assemblages of planktonic foraminifers. The uppermost Eocene-basal Miocene section of Hole 803D is apparently complete, whereas the Oligocene section of Hole 628A contains three unconformities based on planktonic foraminiferal evidence. Anomalous ranges are recorded for Chiloguembelina cubensis and Globigerinoides primordius. C. cubensis is found to range throughout the upper Oligocene of both sites, and G. primordius first occurs near the base of upper Oligocene Zone P22 in Hole 628A. Paleomagnetic stratigraphy provides constraints on the last occurrence (LO) of Subbotina angiporoides, the first occurrence (FO) of Globigerina angulisuturalis, the FO of Globigerinoides primordius, the FO of Paragloborotalia pseudokugleri, and the LO of Chiloguembelina cubensis. In general, taxon ranges, total diversity, and the composition of the planktonic foraminiferal assemblages from Holes 628A and 803D are similar. Differences in the composition of planktonic foraminiferal assemblages between the two sites are interpreted to be primarily the result of enhanced dissolution at Site 803 (e.g., paucity of Globigerina angulisuturalis and absence of G. ciperoensis). However, the greater abundances of Subbotina angiporoides in subtropical Hole 628A and Paragloborotalia opima in tropical Hole 803D are probably related to oceanographic differences between the two low-latitude sites. Comparison between the low and southern high latitudes illustrates some similarities in the composition of Oligocene planktonic foraminiferal assemblages as well as some important differences. Species such as Pseudohastigerina spp., Turborotalia increbescens, "Turborotalia" ampliapertura, Paragloborotalia opima, P. pseudokugleri, P. semivera/mayeri, Globigerinella obesa, Globigerina angulisuturalis, G. gortanii, G. ouachitaensis, G. sellii, G. tapuriensis, G. tripartita, G. pseudovenezuelana, Subbotina? eocaena and S.? yeguaensis are absent or have rare occurrences in the subantarctic Oligocene assemblages. Biogeographic gradients, although not as pronounced as during the late Neogene, were nonetheless significant during the Oligocene.
Resumo:
During 2006, the SHALDRIL program recovered cores of Eocene through Pliocene material at four locations in the northwestern Weddell Sea, each representing a key period in the evolution of the Antarctic Peninsula ice cap. The recovered cores are not continuous, yet they provide a record of climate change with samples from the late Eocene, late Oligocene, middle Miocene, and early Pliocene and represent the only series of samples recovered from the northwestern Weddell Sea and spanning the Cenozoic and the initial growth of the peninsula ice cap. Late Eocene sediments sampled in the James Ross Basin are typically characterized by very dark greenish-gray muddy fine sand with some preserved burrowing and are interpreted to represent a shallow water continental shelf setting. Rare dropstones, primarily of well-cemented sandstones and minor ice-rafted material consisting of angular grains with glacially influenced surface features record the onset of mountain glaciation, the earliest such evidence in the region. The remaining cores were collected on the Joinville Plateau to the north of the James Ross Basin. The late Oligocene sediments consist of dark gray sandy mud with some clay lenses and many burrows, likely representing a distal delta or shelf setting. This core contains only very few and small dropstones, and the individual grains show decreased angularity and fewer glacial surface features relative to late Eocene deposits. The middle Miocene strata are composed of pebbly gray diamicton, representing proximal glacimarine sediments. The lower Pliocene section also contains many ice-rafted pebbles but is dominated by sandy units rather than diamicton and is interpreted to represent a current-winnowed deposit, similar to the modern contour current-influenced sediments of the region.
Resumo:
Stratigraphic information from strontium, oxygen, and carbon isotopic ratios has been integrated with diatom and planktonic foraminifer datums to refine the Oligocene to early Miocene chemostratigraphy of Site 803. The Sr isotope results are based on analyses of mixed species of planktonic foraminifer and bulk carbonate samples. 87Sr/86Sr ratios of bulk carbonate samples are, in most cases, less radiogenic than contemporaneous seawater. Estimated sediment ages based on planktonic foraminifer 87Sr/86Sr ratios, using the Sr-isotope-age relation determined by Hess and others in 1989, are in moderately good agreement with the biostratigraphic ages. Chronological resolution is significantly enhanced with the correlation of oxygen and carbon isotope records to those of the standard Oligocene section tied to the Geomagnetic Polarity Time Scale at Site 522. Ages revised by this method and other published ages of planktonic foraminifer datums are used to revise the Oligocene stratigraphy of Site 77 to correlate the stable isotope records of Sites 77 and 803. Comparison of the Cibicidoides stable isotope records of Sites 77 and 574 with paleodepths below 2500 m in the central equatorial Pacific, and Site 803 at about 2000-m paleodepth in the Ontong Java Plateau reveals inversions in the vertical d18O gradient at several times during the Oligocene and in the early Miocene. The shallower water site had significantly-higher d18O values than the deeper water sites after the earliest Oligocene 18O enrichment and before 34.5 Ma, in the late Oligocene from 27.5 to at least 25 Ma, and in the early Miocene from 22.5 to 20.5 Ma. It is not possible to ascertain if the d18O inversion persisted during the Oligocene/Miocene transition because the deeper sites have hiatuses spanning this interval. We interpret this pattern to reflect that waters at about 2000 m depth were cold and may have formed from mixing with colder waters originating in northern or southern high-latitude regions. The deeper water appear to have been warmer and may have been a mixture with warm saline waters from mid- or low-latitude regions. No apparent vertical d13C gradient is present during the Oligocene, suggesting that the age difference of these water masses was small.
Resumo:
A composite strontium isotopic seawater curve was constructed for the Miocene between 24 and 6 Ma by combining 87Sr/86Sr measurements of planktonic foraminifera from Deep Sea Drilling Project sites 289 and 588. Site 289, with its virtually continuous sedimentary record and high sedimentation rates (26 m/m.y.), was used for constructing the Oligocene to mid-Miocene part of the record, which included the calibration of 63 biostratigraphic datums to the Sr seawater curve using the timescale of Cande and Kent (1992 doi:10.1029/92JB01202). Across the Oligocene/Miocene boundary, a brief plateau occurred in the Sr seawater curve (87Sr/86Sr values averaged 0.70824) which is coincident with a carbon isotopic maximum (CM-O/M) from 24.3 to 22.6 Ma. During the early Miocene, the strontium isotopic curve was marked by a steep rise in 87Sr/86Sr that included a break in slope near 19 Ma. The rate of growth was about 60 ppm/m.y. between 22.5 and 19.0 Ma and increased to over 80 ppm/m.y. between 19.0 and 16 Ma. Beginning at ~16 Ma (between carbon isotopic maxima CM3 and CM4 of Woodruff and Savin (1991 doi:10.1029/91PA02561)), the rate of 87Sr/86Sr growth slowed and 87Sr/86Sr values were near constant from 15 to 13 Ma. After 13 Ma, growth in 87Sr/86Sr resumed and continued until ~9 Ma, when the rate of 87Sr/86Sr growth decreased to zero once again. The entire Miocene seawater curve can be described by a high-order function, and the first derivative (d87Sr/86Sr/dt) of this function reveals two periods of increased slope. The greatest rate of 87Sr/86Sr change occurred during the early Miocene between ~20 and 16 Ma, and a smaller, but distinct, period of increased slope also occurred during the late Miocene between ~12 and 9 Ma. These periods of steepened slope coincide with major phases of uplift and denudation of the Himalayan-Tibetan Plateau region, supporting previous interpretations that the primary control on seawater 87Sr/86Sr during the Miocene was related to the collision of India and Asia. The rapid increase in 87Sr/86Sr values during the early Miocene from 20 to 16 Ma imply high rates of chemical weathering and dissolved riverine fluxes to the oceans. In the absence of another source of CO2, these high rates of chemical weathering should have quickly resulted in a drawdown of atmospheric CO2 and climatic cooling through a reversed greenhouse effect. The paleoclimatic record, however, indicates a warming trend during the early Miocene, culminating in a climatic optimum between 17 and 14.5 Ma. We suggest that the high rates of chemical erosion and warm temperatures during the climatic optimum were caused by an increase in the contribution of volcanic CO2 from the eruption of the Columbia River Flood Basalts (CRFB) between 17 and 15 Ma. The decrease in the rate of CRFB eruptions at 15 Ma and the removal of atmospheric carbon dioxide by increased organic carbon burial in Monterey deposits eventually led to cooling and increased glaciation between ~14.5 and 13 Ma. The CRFB hypothesis helps to explain the significant time lag between the onset of increased rates of organic carbon burial in the Monterey at 17.5 Ma (as marked by increased delta13C values) and the climatic cooling and glaciation during the middle Miocene (as marked by the increase in delta18O values), which did not begin until ~14.5 Ma.
Resumo:
Neogene basins are widespread in Turkey and contain important lignite deposits. In this study, we reconstruct quantitatively the Late Oligocene-Miocene climate evolution in western and central Anatolia by applying the Coexistence Approach to the palynoflora. The obtained results are compared with the data derived from the published and ongoing studies in western and central Anatolia palynofloras by application of the Coexistence Approach. The Coexistence Approach results show that the sedimentation mainly developed on terrestrial environment under the warm subtropical climatic conditions and marine influence during the Chattian and Aquitanian period in western Anatolia (16.5-21.3°C of mean annual temperature (MAT) and 5.5-13.3°C of mean temperature of coldest month (CMT)). After the regression of the sea during the Burdigalian period, the vegetation developed under the terrestrial conditions, which had started in the Burdigalian time in western and central Anatolia and continued in the early-middle Serravallian period. Warm subtropical climate is suggested during the Chattian and Aquitanian period in western Anatolia and becomes cooler in subtropical conditions because of decreasing of the P/A-ratio during the latest Burdigalian-Langhian. The climate was subtropical in western and central Anatolia during the Early-Late Serravalian due to the increasing of the subtropical elements (17.2 to 20.8°C of MAT and 9.6 to13.1°C of CMT). Besides, decreasing of the CMT and MAT values in western and central Anatolia supports the latest Chattian-earliest Aquitanian warming and middle Miocene climatic optimum that is also globally observed. Warm temperate climatic conditions are observed in the Late Miocene. During the early-middle Tortonian, the values are 15.6 to 20.8°C for the MAT, 5.5 to 13.3°C for the CMT and 823 and 1520 mm for the mean annual precipitation (MAP). They had also dry seasons due to lower boundary of MAP lying at 823mm during the middle-Late Tortonian. The palaeotopography of central Anatolia was higher when compared to that of western Anatolia because dominance of the mountain forests was present during the Middle-Late Miocene in central Anatolia. This study provides the first quantitative model for Late Oligocene-Miocene palaeoclimatic evolution in western and central Anatolia.
Resumo:
Modern scleractinian corals are classical components of marine shallow warm water ecosystems. Their occurrence and diversity patterns in the geological record have been widely used to infer past climates and environmental conditions. Coral skeletal composition data reflecting the nature of the coral environment are often affected by diagenetic alteration. Ghost structures of annual growth rhythms are, however, often well preserved in the transformed skeleton. We show that these relicts represent a valuable source of information on growth conditions of fossil corals. Annual growth bands were measured in massive hemispherical Porites of late Miocene age from the island of Crete (Greece) that were found in patch reefs and level bottom associations of attached mixed clastic environments as well as isolated carbonate environments. The Miocene corals grew slowly, about 2-4 mm/yr, compatible with present-day Porites from high-latitude reefs. Slow annual growth of the Miocene corals is in good agreement with the position of Crete at the margin of the Miocene reef belt. Within a given time slice, extension rates were lowest in level bottom environments and highest in attached inshore reef systems. Because sea surface temperatures (SSTs) can be expected to be uniform within a time slice, spatial variations in extension rates must reflect local variations in light levels (low in the level bottom communities) and nutrients (high in the attached reef systems). During the late Miocene (Tortonian-early Messinian), maximum linear extension rates remained remarkably constant within seven chronostratigraphic units, and if the relationship of SSTs and annual growth rates observed for modern massive Indo-Pacific Porites spp. applies to the Neogene, minimum (winter) SSTs were 20°-21°C. Although our paleoclimatic record has a low resolution, it fits the trends revealed by global data sets. In the near future we expect this new and easy to use Porites thermometer to add important new information to our understanding of Neogene climate.
Resumo:
Dinoflagellate cysts were recovered throughout the Paleogene succession of Hole 647A, which contains an almost complete deep-water record of early Eocene through early late Oligocene sedimentation in the Labrador Sea. Dinoflagellate cyst biostratigraphy is in general accord with that provided by other microfossil groups and is consistent with a lower Eocene age, as determined by nannofossils, for basal sediments in Hole 647A. These sediments overlie oceanic crust of Chron 24 age. Dinocyst assemblages indicate outer neritic to oceanic conditions throughout, although the persistent occurrence of Wetzeliellaceae specimens in the lower Eocene suggests a greater influence from shelf environments during this time. Lower Eocene dinocyst assemblages are similar to coeval assemblages from the Rockall Plateau, but those from the middle to upper Eocene have mixed affinities and may be related to the intensification of the proto-Gulf Stream from middle Eocene time. Oligocene dinocyst assemblages suggest the influence of both arctic and North Atlantic wate rmasses at this site. The presence of protoperidineacean species in the upper Eocene and Oligocene may indicate increased availability of nutrients, perhaps related to increased upwelling or the effects of water-mass mixing. Productive samples are dominated by dinocysts and acritarchs, while sporomorphs are represented mainly by bisaccate pollen. Preservational differences within samples may reflect mixing of penecontemporaneous dinocyst populations during the Eocene, and all samples examined may have a considerable allochthonous component. Variability in relative abundance of many species during the Eocene may be related to fluctuating water-mass properties. A total 175 dinocyst and acritarch taxa were recorded from 53 productive samples from the Paleogene. Only one Paleogene sample was barren of palynomorphs. Of three Miocene samples processed, all were barren.
Resumo:
We examine whether or not a relationship exists between the late Miocene carbon isotope shift (~7.6-6.6 Ma) and marine productivity at four sites from the Indian and Pacific Oceans (Ocean Drilling Program Sites 721, 1146, 1172, and 846). We use a multiproxy approach based on benthic foraminiferal accumulation rates, elemental ratios, and dissolution indices, and we compare these data to benthic foraminiferal d13C values measured on the same samples. Although some of these sites have been targeted previously in studies of either the late Miocene/early Pliocene "biogenic bloom" (Sites 721 and 846) or the late Miocene carbon isotope shift (Site 1172), our records are the first to establish paired proxy records of carbon isotopes and paleoproductivity allowing a direct assessment of a potential link. Our results indicate that at all sites, productivity increased sometime during the d13C shift; at three sites (721, 1146, and 846), productivity increased at the beginning of the shift. The correlation coefficients derived from linear regression between micropaleontologically derived productivity and foraminiferal d13C values are relatively high during the time interval containing the late Miocene d13C shift (and statistically significant at three of the sites). Carbon flux and isotope mass balance considerations illustrate that transfer of organic matter between the terrestrial and marine reservoirs together with enhanced oceanic upwelling best approximates observed changes in carbon isotope records and paleoproductivity. We note that long-term trend in the Site 846 paleoproductivity record can be correlated to the long-term trend in the Site 848 eolian flux reconstructions of Hovan (1995, doi:10.2973/odp.proc.sr.138.132.1995) hinting at a link between strengthened wind regime and productivity during the late Miocene.
Resumo:
Volcanogenic rocks from the Sea of Okhotsk are divided into seven age complexes: Late Jurassic, Early Cretaceous, Late Cretaceous, Eocene, Late Oligocene, Late Miocene, and Pliocene-Pleistocene. All these complexes are united into two groups - Late Mesozoic and Cenozoic. Each group reflects a certain stage of development of the Sea of Okhotsk region. Late Mesozoic volcanites build the geological basement of the Sea of Okhotsk, and their petrochemical features are similar to those of the volcanic rocks from the Okhotsk-Chukotka Volcanogen. Pliocene-Pleistocene volcanites reflect stages of tectono-magmatic activity; the latter destroyed the continental margin and produced riftogenic troughs. Geochemical features of volcanites from the Sea of Okhotsk indicate influence of the sialic crust on magma formation and testify formation of the Okhotsk Sea Basin on the destructive margin of the Asian continent.