488 resultados para Diesel Particulate Matter
Resumo:
Mineralogy of suspended matter from surface and bottom waters has been studied at two sites in the Barents Sea. Along with terrigenous minerals, particulate matter samples contain authigenic mineral phases of iron and manganese oxyhydroxides. Mn-feroxyhite, Fe-vernadite, goethite, and proto-ferrihydrite have been identified in samples from the surface waters, whereas birnessite and non-ferruginous vernadite have been found in samples from the bottom waters. Formation of suspended manganese minerals in the bottom waters is explained by an additional Mn supply from underlying reduced sediments during their early diagenesis and oxygen depletion in the near-bottom nepheloid layer. Bacteria are supposed to take part in the authigenic mineral formation.
Resumo:
Data are presented on concentration of dissolved organic carbon and particulate organic nitrogen in sea water at four stations, and also of dissolved and particulate amino acids at a deep-sea station above the Japan Trench. Concentration of Corg ranged from 0.79 to 2.00 mg/l, reaching maximum in the upper productive layers, while that of particulate Norg varied from 0.0018 to 0.037 mg/l, the maximum being in the upper layer (0-100 m). Water and particulate matter contained 18 amino acids in concentrations varying from 0.150 to 0.177 mg/l in the former and from 0.010 to 0.048 mg/l in the latter. Amino acid composition is variable. Vertical distribution of dissolved Corg and particulate Norg, as well as of dissolved and particulate amino acids is greatly dependent on water dynamics.
Resumo:
Results of geochemical studies of suspended matter from the water mass over the hydrothermal field at 9°50'N on the East Pacific Rise are reported. The suspended matter was sampled in background waters, in the buoyant plume, and in the near-bottom waters. Contents of Si, Al, P, Corg, Fe, Mn, Cu, Zn, Ni, Co, As, Cr, Cd, Pb, Ag, and Hg were determined. No definite correlations were found between the elements in the background waters. Many of the chemical elements correlated with Fe and associated with its oxyhydroxides in the buoyant plume. In the near-bottom waters trace elements are associated with Fe, Zn, and Cu (probably, with their sulfides formed during mixing of hydrothermal fluids with seawater). Chemical composition of sediment matter precipitated in a sediment trap was similar to the near-bottom suspended matter.
Resumo:
Grain-size, mineral and chemical compositions of suspended particulate matter (SPM) from waters of the Severnaya (North) Dvina River mouth area during the spring flood in May 2004 is studied. Data published on composition of riverine SPM in the White Sea basin are very poor. The spring flood period when more than half of annual runoff is supplied from the river to the sea in during short time is understood more poorly. The paper considers comparison results of the grain size compositions of SPM and bottom sediments. Data of laser and hydraulic techniques of grain size analysis are compared. Short-period variations of SPM concentration and composition representing two diurnal peaks of the tide level are studied. It is found that SPM is mainly transferred during the spring flood as mineral aggregates up to 40 µm diameter. Sandy-silty fraction of riverine SPM settles in delta branches and channels, and bulk of clay-size material is supplied to the sea. Mineral and chemical compositions of SPM from the North Dvina River are determined by supply of material from the drainage basin. This material is subjected to intense mechanic separation during transfer to the sea. Key regularities of formation of mineral composition of SPM during the flood time are revealed. Effect of SPM grain size composition on distribution of minerals and chemical elements in study in the dynamic system of the river mouth area are characterized.
Resumo:
Distributions of Mn, Fe, Cu, Cd, Cr, Co and Ni in sea water are investigated (42 samples, dissolved and particulate forms) in the vicinity of the underwater gas vent field on the northwestern slope of the Paramushir Island. While regular background distributions of the elements occur in the shore zone, there is a column of elevated concentrations of particulate matter, particulate Mn, and dissolved Mn, Fe, Cu, Cd, Cr, Co and Ni that coincides with location of the gas plume. This column can be traced as high as 780 m above the bottom. High metal concentrations in water of the plume are attributable to physico-chemical concentration at the phase interface; the source of elevated mineral concentrations is obviously flux of dissolved minerals from interstitial waters, which extends to considerable distances in vertical direction.