439 resultados para CHEMISTRY, INORGANIC
Resumo:
Ocean acidification is predicted to negatively impact the reproduction of many marine species, either by reducing fertilization success or diverting energy from reproductive effort. While recent studies have demonstrated how ocean acidification will affect larval and juvenile fishes, little is known about how increasing partial pressure of carbon dioxide (pCO2) and decreasing pH might affect reproduction in adult fishes. We investigated the effects of near-future levels of pCO2 on the reproductive performance of the cinnamon anemonefish, Amphiprion melanopus, from the Great Barrier Reef, Australia. Breeding pairs were held under three CO2 treatments [Current-day Control (430 µatm), Moderate (584 µatm) and High (1032 µatm)] for a 9-month period that included the summer breeding season. Unexpectedly, increased CO2 dramatically stimulated breeding activity in this species of fish. Over twice as many pairs bred in the Moderate (67% of pairs) and High (55%) compared to the Control (27%) CO2 treatment. Pairs in the High CO2 group produced double the number of clutches per pair and 67% more eggs per clutch compared to the Moderate and Control groups. As a result, reproductive output in the High group was 82% higher than that in the Control group and 50% higher than that in the Moderate group. Despite the increase in reproductive activity, there was no difference in adult body condition among the three treatment groups. There was no significant difference in hatchling length between the treatment groups, but larvae from the High CO2 group had smaller yolks than Controls. This study provides the first evidence of the potential effects of ocean acidification on key reproductive attributes of marine fishes and, contrary to expectations, demonstrates an initially stimulatory (hormetic) effect in response to increased pCO2. However, any long-term consequences of increased reproductive effort on individuals or populations remain to be determined.
Resumo:
The community metabolism of a shallow infralittoral ecosystem dominated by the calcareous macroalgae Corallina elongata was investigated in Marseilles (NW Mediterranean), by monitoring hourly changes of seawater pH and total alkalinity over 6 d in February 2000. Fair weather conditions prevailed over the study period as indicated by oceanographic (temperature, salinity, and current velocity and direction) and meteorological variables, which validated the standing water hypothesis. This temperate ecosystem exhibited high community gross primary production (GPP = 519 ± 106 mmol C m-2 d-1, n = 6) and also supported high rates of community respiration (R). As a result, the system was slightly autotrophic (net community production, NCP = 20 mmol C m-2 d-1), with a GPP/R ratio of 1.06. NCP exhibited circadian variations with 2- to 3-fold changes in community respiration, both in the light and in the dark. Rates of net community calcification also exhibited circadian variations, with positive rates (up to 24 mmol CaCO3 m-2 h-1) for irradiance values >300 W m-2 (about 1380 µmol photon m-2 s-1). Below this irradiance threshold, net community dissolution prevailed. Daily net calcification (G) was on average 8 mmol CaCO3 m-2 d-1. CO2 fluxes generated by primary production, respiration, and calcification suggest that the study site was a potential atmospheric CO2 sink of 15 mmol CO2 m-2 d-1 at the time of measurement.
Resumo:
The growth rate of Acropora cervicornis branch tips maintained in the laboratory was measured before, during, and after exposure to elevated nitrate (5 and 10 µM NO3-), phosphate (2 and 4 µM P-PO43) and/or pCO2 (CO2 ~700 to 800 µatm). The effect of increased pCO2 was greater than that of nutrient enrichment alone. High concentrations of nitrate or phosphate resulted in significant decreases in growth rate, in both the presence and absence of increased pCO2. The effect of nitrate and phosphate enrichment combined was additive or antagonistic relative to nutrient concentration and pCO2 level. Growth rate recovery was greater after exposure to increased nutrients or CO2 compared to increased nutrients and CO2. If these results accurately predict coral response in the natural environment, it is reasonable to speculate that the survival and reef-building potential of this species will be significantly negatively impacted by continued coastal nutrification and projected pCO2 increases.
Resumo:
This data was collected during the 'ICE CHASER' cruise from the southern North Sea to the Arctic (Svalbard) in July-Aug 2008. This data consists of coccolithophore abundance, calcification and primary production rates, carbonate chemistry parameters and ancillary data of macronutrients, chlorophyll-a, average mixed layer irradiance, daily irradiance above the sea surface, euphotic and mixed layer depth, temperature and salinity.