540 resultados para Bacillariophyta, biomass
Resumo:
Between 1980 and 1985 ninety-seven stations were sampled by Smith-Mclntyre grab from the offshore northern section of the North Sea. Four hundred and nine infaunal species were identified from the 76 selected macrofaunal stations. The number of species per station varied from 25 to 80 with a maximum abundance of 9,600 individuals m**2. The biomass ranged from 0.13 to 18.86 g dry weight m**2. At most stations, however, biomass varied between 1 and 4 g dry weight m**2. Diversity and abundance were highest in the 120-140 m zone, characterised by fine sand containing variable amounts of silt. The highest biomasses were recorded in two areas; firstly where stronger currents predominate and the sediments are coarser (east of Shetland and west of the Norwegian Trough), and secondly in the fine sandy deposits of the centrally located area. In the silty sediments (Fladen Ground and smaller depressions) there was a predominantly subsurface deposit-feeding community, whereas in the coarser area east of the Shetlands carnivores predominated. Over the remaining area surface deposit feeders were dominant.
Resumo:
Theory and observation indicate that changes in the rate of primary production can alter the balance between the bottom-up influences of plants and resources and the top-down regulation of herbivores and predators on ecosystem structure and function. The Exploitation Ecosystem Hypothesis (EEH) posited that as aboveground net primary productivity (ANPP) increases, the additional biomass should support higher trophic levels. We developed an extension of EEH to include the impacts of increases in ANPP on belowground consumers in a similar manner as aboveground, but indirectly through changes in the allocation of photosynthate to roots. We tested our predictions for plants aboveground and for phytophagous nematodes and their predators belowground in two common arctic tundra plant communities subjected to 11 years of increased soil nutrient availability and/or exclusion of mammalian herbivores. The less productive dry heath (DH) community met the predictions of EEH aboveground, with the greatest ANPP and plant biomass in the fertilized plots protected from herbivory. A palatable grass increased in fertilized plots while dwarf evergreen shrubs and lichens declined. Belowground, phytophagous nematodes also responded as predicted, achieving greater biomass in the higher ANPP plots, whereas predator biomass tended to be lower in those same plots (although not significantly). In the higher productivity moist acidic tussock (MAT) community, aboveground responses were quite different. Herbivores stimulated ANPP and biomass in both ambient and enriched soil nutrient plots; maximum ANPP occurred in fertilized plots exposed to herbivory. Fertilized plots became dominated by dwarf birch (a deciduous shrub) and cloudberry (a perennial forb); under ambient conditions these two species coexist with sedges, evergreen dwarf shrubs, and Sphagnum mosses. Phytophagous nematodes did not respond significantly to changes in ANPP, although predator biomass was greatest in control plots. The contrasting results of these two arctic tundra plant communities suggest that the predictions of EEH may hold for very low ANPP communities, but that other factors, including competition and shifts in vegetation composition toward less palatable species, may confound predicted responses to changes in productivity in higher ANPP communities such as the MAT studied here.