871 resultados para Accumulation rate, marine organic carbon


Relevância:

100.00% 100.00%

Publicador:

Resumo:

To provide insights into the long-term evolution of aquatic ecosystems without human interference, we here evaluate a decadal- to centennial-scale-resolution diatom record spanning about 12 ka of the Holsteinian interglacial (Marine Isotope Stage 11c). Using a partially varved sediment core from the Dethlingen palaeolake (northern Germany), which has previously been studied for palynological and microfacies signals, we document the co-evolution of the aquatic and surrounding terrestrial environment. The diatom record is dominated by the genera Stephanodiscus, Aulacoseira, Ulnaria and Fragilaria. Based on the diatom assemblages and physical sediment properties, the evolution of the Dethlingen palaeolake can be subdivided into three major phases. During the oldest phase (lasting ~1900 varve years), the lake was ~10-15 m deep and characterized by anoxic bottom-water conditions and a high nutrient content. The following ~5600 years exhibited water depths >20 m, maximum diatom and Pediastrum productivity, and a peak in allochtonous nutrient input. During this phase, water-column mixing became more vigorous, resulting in a breakdown of anoxia. The youngest lake phase (~4000-5000 years) was characterized by decreasing water depth, turbulent water conditions and decreased nutrient loading. Based on our palaeolimnological data, we conclude that the evolution of the Dethlingen palaeolake during the Holsteinian interglacial responded closely to (i) changes within the catchment area (as documented by vegetation and sedimentation) related to the transition from closed forests growing on nutrient-rich soils (mesocratic forest phase) to open forests developing on poor soils (oligocratic forest phase), and (ii) short-term climate variability as reflected in centennial-scale climate perturbations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The quantity and quality of organic carbon of Eocene to Holocene sediments from ODP Sites 645, 646, and 647 were investigated to reconstruct depositional environments. Results were based on organic-carbon and nitrogen determinations, Rock-Eval pyrolysis, and kerogen microscopy. The sediments at Site 645 in Baffin Bay are characterized by relatively high organic-carbon values, most of which range from 0.5% to almost 3%, with maximum values in the middle Miocene. Distinct maxima of organic-carbon accumulation rates occur between 18 and 12.5 Ma and between 3.4 and 0 Ma. At Sites 646 and 647 in the Labrador Sea, organic-carbon contents vary between 0.1% and 0.75%. Cyclic 'Milankovitch-type' changes in organic-carbon deposition imply climate-controlled mechanisms that cause these fluctuations. The composition of organic matter at Site 645 is dominated by terrigenous components throughout the entire sediment sequence. An increased content of marine organic carbon was recorded only in the late-middle Miocene. At Sites 646 and 647, the origin of the organic matter most probably is marine. Oceanic paleoproductivity values were estimated, based on the amount of marine organic carbon. During most of the Neogene time interval at Site 645, productivity was low, i.e., similar or less than that measured in Baffin Bay today. Higher values of up to 150 (200) gC/m**2/y may have occurred only in the Miocene. At Sites 646 and 647, mean paleoproductivity values vary between 90 and 170 gC/m**2/y; i.e., these are also similar to those measured in the Labrador Sea today. Lower values of 40 to 70 gC/m**2/y were estimated for the early Eocene and (middle) Miocene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Synthetic mass accumulation rates have been calculated for ODP Site 707 using depth-density and depth-porosity functions to estimate values for these parameters with increasing sediment thickness, at 1 Ma time intervals determined on the basis of published microfossil datums. These datums were the basis of the age model used by Peterson and Backman (1990, doi:10.2973/odp.proc.sr.115.163.1990) to calculate actual mass accumulation rate data using density and porosity measurements. A comparison is made between the synthetic and actual mass accumulation rate values for the time interval 37 Ma to the Recent for 1 Myr time intervals. There is a correlation coefficient of 0.993 between the two data sets, with an absolute difference generally less than 0.1 g/cm**2/kyr. We have used the method to extend the mass accumulation rate analysis back to the Late Paleocene (60 Ma) for Site 707. Providing age datums (e.g. fossil or magnetic anomaly data) are available the generation of synthetic mass accumulation rates can be calculated for any sediment sequence.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Regional consequences of the biotic extinctions and of the changes in biological productivity that occurred at the time of the Cretaceous/Tertiary (K/T) boundary were investigated by comparison of organic matter in sediments from three southern Tethyan margin locations. Organic matter characterization comprised Rock-Eval pyrolysis and organic carbon measurements. Low concentrations of organic matter precluded additional detailed determinations. At all three locations, the organic matter has been microbially reworked and evidently was deposited in oxygenated marine environments.