107 resultados para tropical species


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxygen and carbon isotope records are presented for the planktonic foraminifers Dentoglobigerina altispira and Globigerinoides sacculifer (shallow-dwelling species) and Globoquadrina venezuelana (deep-dwelling species) from Miocene sediments at two Ocean Drilling Program sites, located at depths of near 3000 m, in the western (Site 709) and eastern (Site 758) tropical Indian Ocean. The planktonic isotope record at Site 709 is compared with the benthic isotope record obtained at this site by Woodruff et al. (1990, doi:10.2973/odp.proc.sr.115.147.1990). The isotope stratigraphy is related to the biostratigraphy and the available magnetostratigraphy at the sites. Despite varying sampling density, incompleteness of isotopic records, and the condensed (or even disturbed) nature of parts of the sequences, a number of chronostratigraphic isotopic signals previously recognized in the equatorial Pacific and at other tropical Indian Ocean sites are identified.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cores from four Ocean Drilling Program (ODP) sites were examined for planktonic foraminifers. One sample per core (from core-catchers in Holes 806B and 807B and from Section 4 in Holes 847B and 852B) was examined through the interval representing the last 5.8 m.y. Sites 806 (0°19.1'N; 159°21.7'E) and 847 (0o12.1'N; 95°19.2'W) are beneath the equatorial divergence zone. Sites 807 (3°36.4'N; 156°37.5'E) and 852 (5°19.6'N; 110°4.6'W) are located north of the equator in the convergence zone created by the interaction of the westward-flowing South Equatorial Current (SEC) and the eastward-flowing North Equatorial Countercurrent (NECC). Specimens were identified to species and then grouped according to depth habitat and trophic level. Species richness and diversity were also calculated. Tropical neogloboquadrinids have been more abundant in the eastern than in the western equatorial Pacific Ocean throughout the last 5.8 m.y. During the mid-Pliocene (3.8-3.2 Ma), their abundance increased at all sites, while during the Pleistocene (after ~ 1.6 Ma), they expanded in the east and declined in the west. This suggests an increase in surface-water productivity across the Pacific Ocean during the closing of the Central American seaway and an exacerbation of the productivity asymmetry between the eastern and western equatorial regions during the Pleistocene. This faunal evidence agrees with eolian grain-size data (Hovan, 1995) and diatom flux data (Iwai, this volume), which suggest increases in tradewind strength in the eastern equatorial Pacific that centered around 3.5 and 0.5 Ma. The present longitudinal zonation of thermocline dwelling species, a response to the piling of warm surface water in the western equatorial region of the Pacific, seems to have developed after 2.4 Ma, not directly after the closing of the Panama seaway (3.2 Ma). Apparently, after 2.4 Ma, the piling warm water in the west overwhelmed the upwelling of nutrients into the photic zone in that region, creating the Oceanographic asymmetry that exists in the modern tropical Pacific and is reflected in the microfossil record. In the upper Miocene and lower Pliocene sediments, the ratio of thermocline-dwelling species to mixed-layer dwellers is 60%:40%. During the mid-Pliocene, the western sites became 40% thermocline and 60% mixed-layer dwellers. Subsequent to -2.4 Ma, the asymmetry increased to 20%: 80% in the west and the reverse in the east. This documents the gradual thickening of the warm-water layer piled up in the western tropical Pacific over the last 5.8 m.y. and reveals two "steps" in the biotic trend that can be associated with specific events in the physical environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction Many marine planktonic crustaceans such as copepods have been considered as widespread organisms. However, the growing evidence for cryptic and pseudo-cryptic speciation has emphasized the need of re-evaluating the status of copepod species complexes in molecular and morphological studies to get a clearer picture about pelagic marine species as evolutionary units and their distributions. This study analyses the molecular diversity of the ecologically important Paracalanus parvus species complex. Its seven currently recognized species are abundant and also often dominant in marine coastal regions worldwide from temperate to tropical oceans. Results COI and Cytochrome b sequences of 160 specimens of the Paracalanus parvus complex from all oceans were obtained. Furthermore, 42 COI sequences from GenBank were added for the genetic analyses. Thirteen distinct molecular operational taxonomic units (MOTU) and two single sequences were revealed with cladistic analyses (Maximum Likelihood, Bayesian Inference), of which seven were identical with results from species delimitation methods (barcode gaps, ABDG, GMYC, Rosenberg's P(AB)). In total, 10 to 12 putative species were detected and could be placed in three categories: (1) temperate geographically isolated, (2) warm-temperate to tropical wider spread and (3) circumglobal warm-water species. Conclusions The present study provides evidence of cryptic or pseudocryptic speciation in the Paracalanus parvus complex. One major insight is that the species Paracalanus parvus s.s. is not panmictic, but may be restricted in its distribution to the northeastern Atlantic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plankton pump samples and plankton tows (size fractions between 0.04 mm and 1.01 mm) from the eastern North Atlantic Ocean contain the following shell- and skeleton-producing planktonic and nektonic organisms, which can be fossilized in the sediments: diatoms, radiolarians, foraminifers, pteropods, heteropods, larvae of benthic gastropods and bivalves, ostracods, and fish. The abundance of these components has been mapped quantitatively in the eastern North Atlantic surface waters in October - December 1971. More ash (after ignition of the organic matter, consisting mostly of these components) per cubic meter of water is found close to land masses (continents and islands) and above shallow submarine elevations than in the open ocean. Preferred biotops of planktonic diatoms in the region described are temperate shallow water and tropical coastal upwelling areas. Radiolarians rarely occur close to the continent, but are abundant in pelagic warm water masses, even near islands. Foraminifers are similar to the radiolarians, rarer in the coastal water mass of the continent than in the open ocean or off oceanic islands. Their abundance is highest outside the upwelling area off NW Africa. Molluscs generally outnumber planktonic foraminifers, implying that the carbonate cycle of the ocean might be influenced considerably by these animals. The molluscs include heteropods, pteropods, and larvae of benthic bivalves and gastropods. Larvae of benthic molluscs occur more frequently close to continental and island margins and above submarine shoals (in this case mostly guyots) than in the open ocean. Their size increases, but they decrease in number with increasing distance from their area of origin. Ostracods and fish have only been found in small numbers concentrated off NW Africa. All of the above-mentioned components occur in higher abundances in the surface water than in subsurface waters. They are closely related to the hydrography of the sampled water masses (here defined through temperature measurements). Relatively warm water masses of the southeastern branches of the Gulf Stream system transport subtropical and southern temperate species to the Bay of Biscay, relatively cool water masses of the Portugal and Canary Currents carry transitional faunal elements along the NW African coast southwards to tropical regions. These mix in the northwest African upwelling area with tropical faunal elements which are generally assumed to live in the subsurface water masses and which probably have been transported northwards to this area by a subsurface counter current. The faunas typical for tropical surface water masses are not only reduced due to the tongue of cool water extending southwards along the coast, but they are also removed from the coastal zone by the upwelling subsurface water masses carrying their own shell and skeleton assemblages. Tropical water masses contain much more shelland skeleton-producing plankters than subtropical and temperate ones. The climatic conditions found at different latitudes control the development and intensity of a separate continental coastal water mass with its own plankton assemblages. Extent of this water mass and steepness of gradients between the pelagic and coastal environment limit the occurrence of pelagic plankton close to the continental coast. A similar water mass in only weakly developed off oceanic islands.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Documenting changes in distribution is necessary for understanding species' response to environmental changes, but data on species distributions are heterogeneous in accuracy and resolution. Combining different data sources and methodological approaches can fill gaps in knowledge about the dynamic processes driving changes in species-rich, but data-poor regions. We combined recent bird survey data from the Neotropical Biodiversity Mapping Initiative (NeoMaps) with historical distribution records to estimate potential changes in the distribution of eight species of Amazon parrots in Venezuela. Using environmental covariates and presence-only data from museum collections and the literature, we first used maximum likelihood to fit a species distribution model (SDM) estimating a historical maximum probability of occurrence for each species. We then used recent, NeoMaps survey data to build single-season occupancy models (OM) with the same environmental covariates, as well as with time- and effort-dependent detectability, resulting in estimates of the current probability of occurrence. We finally calculated the disagreement between predictions as a matrix of probability of change in the state of occurrence. Our results suggested negative changes for the only restricted, threatened species, Amazona barbadensis, which has been independently confirmed with field studies. Two of the three remaining widespread species that were detected, Amazona amazonica, Amazona ochrocephala, also had a high probability of negative changes in northern Venezuela, but results were not conclusive for Amazona farinosa. The four remaining species were undetected in recent field surveys; three of these were most probably absent from the survey locations (Amazona autumnalis, Amazona mercenaria and Amazona festiva), while a fourth (Amazona dufresniana) requires more intensive targeted sampling to estimate its current status. Our approach is unique in taking full advantage of available, but limited data, and in detecting a high probability of change even for rare and patchily-distributed species. However, it is presently limited to species meeting the strong assumptions required for maximum-likelihood estimation with presence-only data, including very high detectability and representative sampling of its historical distribution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

All sample sites were situated at the northern tip of Napu Valley in Central Sulawesi, Indonesia. After an initial mapping of the study area, we selected 15 smallholder cacao plantations as sites for bird and bat exclosure experiments in March 2010. On each study site, we established 4 treatments for these exclosure experiments (bird exclosure - closed during daytime and open during night; bat exclosure - closed overnight and opened during daytime; full exclosure of both birds and bats - always closed and unmanipulated/open control treatments - always open). In each treatment, there were 2 cacao trees (total of 8 cacao trees per study site), surrounded by nylon filament (2x2 cm mesh size) that was opened and closed according to the activity period of day and night active flying vertebrates (05:00-06:00 am and 17:00-18:00 pm) on a daily basis. The mean tree height and diameter at breast height (dbh) result from two measures of all study trees at the beginning of the exclosure experiment (June 2010) and 6 months later (February 2011).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Collections made with 150 l sampling bottles and BR 113/140 nets, as well as direct counts from the Mir submersible are used to analyze vertical distribution of total biomass of meso- and macroplankton and biomass distributions of their main component groups in the central oligotrophic regions of the North Pacific. Biomass of mesoplankton in the upper 200 m layer ranges from 3.1 to 8.6 g/m**2, but sometimes it increases up to as much as 98 g/m**2 in local population explosions of salps. Jellies predominate in macroplankton at depths of up to 2-3 km, contributing 97-98% of live weight and 30-70% of biomass as organic carbon. In importance they are followed by micronecton fishes (up to 40% of organic carbon). Contributions of other groups countable from the submersible were negligible. Distributions of species at particular stations are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is based on Santonian-Campanian sediments of Ocean Drilling Program Sites 1257 (2951 mbsl) and 1259 (2353 mbsl) from Demerara Rise (Leg 207, western tropical Atlantic, off Surinam). According to its position, Demerara Rise should have been influenced by the early opening of the Equatorial Atlantic Gateway and the establishment of a bottom-water connection between the central and South Atlantic Oceans during the Late Cretaceous. The investigated benthic foraminiferal faunas demonstrate strong fluctuations in bottom-water oxygenation and organic-matter flux to the sea-floor. The Santonian-earliest Campanian interval is characterised by laminated black shales without benthic foraminifera in the lowermost part, followed by an increasing number of benthic foraminifera. These are indicative of anoxic to dysoxic bottom waters, high organic-matter fluxes and a position within the oxygen minimum zone. At the shallower Site 1259, benthic foraminifera occurred earlier (Santonian) than at the deeper Site 1257 (Early Campanian). This suggests that the shallower site was characterised by fluctuations in the oxygen minimum zone and that a re-oxygenation of the sea-floor started considerably earlier at shallower water-depths. We speculate that this re-oxygenation was related to the ongoing opening of the Equatorial Atlantic Gateway. A condensed glauconitic chalk interval of Early Campanian age (Nannofossil Zone CC18 of Sissingh) overlies the laminated shales at both sites. This interval contains benthic foraminiferal faunas reflecting increasing bottom-water oxygenation and reduced organic-matter flux. This glauconitic chalk is strongly condensed and contains most of the Lower and mid-Campanian. Benthic foraminiferal species indicative of well-oxygenated and more oligotrophic environments characterise the overlying mid- to Upper Campanian nannofossil chalk. During deposition of the nannofossil chalk, a permanent deep-water connection between the central and South Atlantic Oceans is proposed, leading to ventilated and well-oxygenated bottom waters. If this speculation is true, the establishment of a permanent deep-water connection between the central and South Atlantic Oceans terminated Oceanic Anoxic Event 3 "black shale" formation in the central and South Atlantic marginal basins during the Early Campanian (Nannofossil Zone CC18) and led to well-oxygenated bottom waters in the entire Atlantic Ocean during the Late Campanian (at least from Nannofossil Zone CC22 onwards).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Study of DSDP Sites 71, 77, and 495 has allowed the development of a refined diatom biostratigraphy for the latest Oligocene through early middle Miocene of the eastern tropical Pacific which is well correlated to the low-latitude zonations for planktonic foraminifers, coccoliths, and radiolarians. Six zones and 7 subzones are proposed, and correlation with high-latitude diatoms zonations for the North Pacific, the Norwegian Sea, and the Southern Ocean is suggested by the discovery of selected diatoms in these tropical sediments which were previously thought to be restricted to high latitudes. Six new species and one new variety of diatoms which are stratigraphically useful are proposed : Actinocyclus hajosiae, n. sp., A. radionovae, n. sp., Coscinodiscus blysmos, n. sp., C. praenodulifer, n. sp., Craspedodiscus rydei, n. sp., Thalassiosira bukryi, n. sp., and Coscinodiscus lewisianus var. robustus n. var.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Distribution of planktonic foraminiferal tests was studied in 15 Upper Quaternary sediment cores from the continental slope of Africa, the Canary and Cape Verde basins, and slopes of the Mid-Atlantic Ridge. In all the cores substantial variations were found in relationship between foraminiferal planktonic species reflecting fluctuations of mean annual temperatures of surface waters. Temperature difference in temperatures between present time and that of the maximum of the stadial of the last continental glaciation glacial stadial (about 18,000 yrs ago) ranges from 8.5°C in the Canary upwelling region to minimum values of 2.0°C in the central part of the ocean, i.e. the southern part of the subtropical gyre. Temperature difference the Holocene optimum and 18,000 yrs ago ranges from 10°C to 3°C. Age estimates are supported by radiocarbon dates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The first thorough analysis of microfossils from ore-bearing sediments of the Ashadze-1 Hydrothermal Field in the Mid-Atlantic Ridge sampled during Cruise 26 of R/V Professor Logachev in 2005 revealed substantial influence of hydrothermal processes on preservation of planktonic calcareous organisms as well as on preservation and composition of benthic foraminifera. From lateral and vertical distribution patterns and secondary alterations of microfossils it is inferred that the main phase of hydrothermal mineralization occurred in Holocene. Heavy metals (Cu, Co, Cr, and Ag) were accumulated by foraminiferal tests and in their enveloping Fe-Mn crusts. Distribution of authigenic minerals replacing foraminiferal tests demonstrates local zoning related to hydrothermal activity. There are three mineral-geochemical zones defined: sulfide zone, zone with elevated Mg content, and zone of Fe-Mn crusts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tropical climate is variable on astronomical time scale, driving changes in surface and deep-sea fauna during the Pliocene-Pleistocene. To understand these changes in the tropical Indian Ocean over the past 2.36 Myr, we quantitatively analyzed deep-sea benthic foraminifera and selected planktic foraminifera from >125 µm size fraction from Deep Sea Drilling Project Site 219. The data from Site 219 was combined with published foraminiferal and isotope data from Site 214, eastern Indian Ocean to determine the nature of changes. Factor and cluster analyses of the 28 highest-ranked species distinguished four biofacies, characterizing distinct deep-sea environmental settings. These biofacies have been named after their most dominant species such as Stilostomella lepidula-Pleurostomella alternans (Sl-Pa), Nuttallides umbonifer-Globocassidulina subglobosa (Nu-Gs), Oridorsalis umbonatus-Gavelinopsis lobatulus (Ou-Gl) and Epistominella exigua-Uvigerina hispido-costata (Ee-Uh) biofacies. Biofacies Sl-Pa ranges from ~2.36 to 0.55 Myr, biofacies Nu-Gs ranges from ~1.9 to 0.65 Myr, biofacies Ou-Gl ranges from ~1 to 0.35 Myr and biofacies Ee-Uh ranges from 1.1 to 0.25 Myr. The proxy record indicates fluctuating tropical environmental conditions such as oxygenation, surface productivity and organic food supply. These changes appear to have been driven by changes in monsoonal wind intensity related to glacial-interglacial cycles. A shift at ~1.2-0.9 Myr is observed in both the faunal and isotope records at Site 219, indicating a major increase in monsoon-induced productivity. This coincides with increased amplitude of glacial cycles, which appear to have influenced low latitude monsoonal climate as well as deep-sea conditions in the tropical Indian Ocean.