134 resultados para thermo oxidation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Whole-rock basalt samples from the upper half of Deep Sea Drilling Project Hole 504B have oxygen-isotope compositions typical of mid-ocean-ridge basalts which have experienced a moderate degree of low-temperature alteration by sea water. By contrast, d18O values in the lower half of the hole correspond to basalts which have experienced almost no detectable oxygen-isotope alteration. These observations suggest that the overall water/rock ratio was lower in the lower half of the drilled crust. A correlation between d18O values and 87Sr/86Sr ratios suggests that the water/rock ratio, rather than temperature variation, was the main factor determining basalt d18O values. Hydrogen-isotope data appear to be consistent with a low water/rock ratio in the lower part of the crust.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Different types of seep carbonates were recovered from the 'Kouilou pockmarks' on the Congo deep-sea fan in approximately 3100 m water depth. The carbonate aggregates are represented by pyritiferous nodules, crusts and slabs, tubes, and filled molds. The latter are interpreted to represent casts of former burrows of bivalves and holothurians. The nodules consisting of high-Mg-calcite apparently formed deeper within the sediments than the predominantly aragonitic crusts and slabs. Nodule formation was caused by anaerobic oxidation of methane dominantly involving archaea of the phylogenetic ANME-1 group, whereas aragonitic crusts resulted from the activity of archaea of the ANME-2 cluster. Evidence for this correlation is based on the distribution of specific biomarkers in the two types of carbonate aggregates, showing higher hydroxyarchaeol to archaeol ratios in the crusts as opposed to nodules. Formation of crusts closer to the seafloor than nodules is indicated by higher carbonate contents of crusts, probably reflecting higher porosities of the host sediment during carbonate formation. This finding is supported by lower d18O values of crusts, agreeing with precipitation from pore waters similar in composition to seawater. The aragonitic mineralogy of the crusts is also in accord with precipitation from sulfate-rich pore waters similar to seawater. Moreover, the interpretation regarding the relative depth of formation of crusts and nodules agrees with the commonly observed pattern that ANME-1 archaea tend to occur deeper in the sediment than members of the ANME-2 group. Methane represents the predominant carbon source of all carbonates (d13C values as low as -58.9 per mil V-PDB) and the encrusted archaeal biomarkers (d13C values as low as -140 per mil V-PDB). Oxygen isotope values of some nodular carbonates, ranging from + 3.9 to + 5.1per mil V-PDB, are too high for precipitation in equilibrium with seawater, probably reflecting the destabilization of gas hydrates, which are particularly abundant at the Kouilou pockmarks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rate of hydrogen sulfide oxidation in the redox zone of the Black Sea and rate of hydrogen sulfide formation due to bacterial sulfate reduction in the upper layer of anaerobic waters were measured in February-April 1991. These measurements were made using sulfur radioisotope under conditions close to those in situ. It was established that hydrogen sulfide is oxidized in the layer of oxygen and hydrogen sulfide coexistence under the upper boundary of the hydrogen sulfide layer. Maximum rate of hydrogen sulfide oxidation was recorded within the limits of density values dT of 16.20-16.30, while varying in the layer from 2 to 4.5 µmol/day. The average rate of hydrogen sulfide oxidation was 1.5-3 times higher than that during the warm season. Sulfide formation was not observed at most of the stations in the examined lower portion of the pycnocline layer (140 to 400 m). Noticeable sulfate reduction was detected only at one station on the northwestern shelf. Intensified hydrodynamics in the upper layers of the water mass during the cold season can be a probable reason for such noticeable changes in sulfur dynamics in the water mass of the Black Sea. Data suggesting that hydrogen sulfide oxidation proceeds under the hydrogen sulfide boundary indicate absence of the so-called "suboxic zone" in this basin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here, we present results from sediments collected in the Argentine Basin, a non-steady state depositional marine system characterized by abundant oxidized iron within methane-rich layers due to sediment reworking followed by rapid deposition. Our comprehensive inorganic data set shows that iron reduction in these sulfate and sulfide-depleted sediments is best explained by a microbially mediated process-implicating anaerobic oxidation of methane coupled to iron reduction (Fe-AOM) as the most likely major mechanism. Although important in many modern marine environments, iron-driven AOM may not consume similar amounts of methane compared with sulfate-dependent AOM. Nevertheless, it may have broad impact on the deep biosphere and dominate both iron and methane cycling in sulfate-lean marine settings. Fe-AOM might have been particularly relevant in the Archean ocean, >2.5 billion years ago, known for its production and accumulation of iron oxides (in iron formations) in a biosphere likely replete with methane but low in sulfate. Methane at that time was a critical greenhouse gas capable of sustaining a habitable climate under relatively low solar luminosity, and relationships to iron cycling may have impacted if not dominated methane loss from the biosphere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

First videographic indication of an Antarctic cold seep ecosystem was recently obtained from the collapsed Larsen B ice shelf, western Weddell Sea (Domack et al., 2005). Within the framework of the R/V Polarstern expedition ANTXXIII-8, we revisited this area for geochemical, microbiological and further videographical examinations. During two dives with ROV Cherokee (MARUM, Bremen), several bivalve shell agglomerations of the seep-associated, chemosynthetic clam Calyptogena sp. were found in the trough of the Crane and Evans glacier. The absence of living clam specimens indicates that the flux of sulphide and hence the seepage activity is diminished at present. This impression was further substantiated by our geochemical observations. Concentrations of thermogenic methane were moderately elevated with 2 µM in surface sediments of a clam patch, increasing up to 9 µM at a sediment depth of about 1 m in the bottom sections of the sediment cores. This correlated with a moderate decrease in sulphate from about 28 mM at the surface down to 23.4 mM, an increase in sulphide to up to 1.43 mM and elevated rates of the anaerobic oxidation of methane (AOM) of up to 600 pmol cm**-3 d**-1 at about 1 m below the seafloor. Molecular analyses indicate that methanotrophic archaea related to ANME-3 are the most likely candidates mediating AOM in sediments of the Larsen B seep.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The backarc glasses recovered during Ocean Drilling Program Leg 135 are unique among submarine tholeiitic glasses with respect to their oxygen fugacity and sulfur concentrations. Unlike mid-ocean-ridge basalt glasses, fO2 in these samples (inferred from ratios Fe3+/Fe2+) is high and variable, and S variations (90-1140 ppm) are not coupled with FeO concentration. Strong correlations occur between the alkali and alkaline-earth elements and both fO2 (positive correlations) and S concentrations (negative correlations). Correlations between fO2 and various trace elements are strongest for those elements with a known affinity for hydrous fluids (perhaps produced during slab dehydration), suggesting the presence of a hydrous fluid with high fO2 and high alkali and alkaline earth element concentrations in the Lau Basin mantle. Concentrations of S and fO2 are strongly correlated; high fO2 samples are characterized by low S in addition to high alkali and alkaline earth element concentrations. The negative correlations between S and these trace elements are not consistent with incompatible behavior of S during crystallization. Mass balance considerations indicate that the S concentrations cannot result simply from mixing between low-S and high-S sources. Furthermore, there is no relationship between S and other trace elements or isotope ratios that might indicate that the S variations reflect mixing processes. The S variations more likely reflect the fact that when silicate coexists with an S-rich vapor phase the solubility of S in the silicate melt is a function of fO2 and is at a minimum at the fO2 conditions recorded by these glasses. The absence of Fe-sulfides and the high and variable vesicle contents are consistent with the idea that S concentrations reflect silicate-vapor equilibria rather than silicate-sulfide equilibria (as in MORB). The low S contents of some samples, therefore, reflect the high fO2 of the supra-subduction zone environment rather than a low-S source component.