51 resultados para the lies
Resumo:
In order to monitor the evolution of the British-Irish Ice Sheet (BIIS) and its influence in surface ocean structure during marine isotopic stages (MIS) 2 and 3, we have analyzed the sediments recovered in core MD04-2829CQ (Rosemary Bank, north Rockall Trough, northeast Atlantic) dated between ~41 and ~18 ka B.P. Ice-rafted debris flux and composition, 40Ar/39Ar ages of individual hornblende grains, multispecies planktonic stable isotope records, planktonic foraminifera assemblage data and faunal-based sea surface temperatures (SSTs) demonstrate a close interaction between BIIS dynamics and surface ocean structure and water properties in this region. The core location lies beneath the North Atlantic Current (NAC) and is ideal for monitoring the shifts in the position of its associated oceanic fronts, as recorded by faunal changes. These data reveal a succession of BIIS-sourced iceberg calving events related to low SST, usually synchronous with dramatic changes in the composition of the planktonic foraminifera assemblage and with variations in the stable isotope records of the taxa Neogloboquadrina pachyderma (sinistral coiling) and Globigerina bulloides. The pacing of the calving events, from typically Dansgaard-Oeschger millennial timescales during late MIS 3 to multicentennial cyclicity from ~28 ka B.P., represents the build-up of the BIIS and its growing instability toward Heinrich Event (HE) 2 and the Last Glacial Maximum. Our data confirm the strong coupling between BIIS instabilities and the temperature and salinity of surface waters in the adjacent northeast Atlantic and demonstrate the BIIS's ability to modify the NAC on its flow toward the Nordic Seas. In contrast, subsurface water masses were less affected except during the Greenland stadials that contain HEs, when most intense water column reorganizations occurred simultaneously with the deposition of cream-colored carbonate sourced from the Laurentide Ice Sheet.
Resumo:
The role of hotter than ambient plume mantle in the formation of a rifted volcanic margin in the northern Arabian Sea is investigated using subsidence analysis of a drill site located on the seismically defined Somnath volcanic ridge. The ridge has experienced >4 km of subsidence since 65 Ma and lies within oceanic lithosphere. We estimate crustal thickness to be 9.5-11.5 km. Curiously <400 m of the thermal subsidence occurred prior to 37 Ma, when subsidence rates would normally be at a maximum. We reject the hypothesis that this was caused by increasing plume dynamic support after continental break-up because the size of the thermal anomalies required are unrealistic (>600°C), especially considering the rapid northward drift of India relative to the Deccan-Réunion hotspot. We suggest that this reflects very slow lithospheric growth, possibly caused by vigorous asthenospheric convection lasting >28 m.y., and induced by the steep continent-ocean boundary. Post-rift slow subsidence is also recognized on volcanic margins in the NE Atlantic and SE Newfoundland and cannot be used as a unique indicator of plume mantle involvement in continental break-up.
Resumo:
During most of the vegetation season from late May to early September large-sized diatom alga Proboscia alata forms local patches with high abundances and biomasses in different oceanographic domains of the eastern Bering Sea shelf. For 0-25 m layer average abundance and biomass of species in these patches are 700000 cells/l and 5 g/m**3 (wet weight), while corresponding estimates for the layer of maximal species concentrations are 40000000 cells/l and 38 g/m**3 (wet weight) or 1.6 g C/m**3. These levels of abundance and biomass are typical for the spring diatom bloom in the region. Outbursts of P. alata mass development are important for the carbon cycle in the pelagic zone of the shelf area in the summer season. The paradox of P. alata summertime blooms over the middle shelf lies in their occurrences against the background of the sharp seasonal pycnocline and deficiency in nutrients in the upper mixed layer. Duration of the outbursts in P. alata development is about two weeks and size of patches with high abundances can be as large as 200 km across. Degradation of the P. alata summertime outbursts may occur during 4-5 days. Rapid sinking of cells through the seasonal pycnocline results in intense transport of organic matter to bottom sediments. One of possible factors responsible for rapid degradation of the blooms is affect on the population by ectoparasitic flagellates. At terminal stages of the P. alata blooms percentage of infected cells can reach 70-99%.
Resumo:
Site 695 lies on the southeast margin of the South Orkney microcontinent on the northern margin of the Weddell Sea, at 62°23.48'S, 43°27.10'W in 1305 m water depth. The inorganic properties of interstitial waters at this site, including sulfate reduction, biogenic methane production, and high concentrations of ammonia and phosphate, imply high microbial activity. However, no clear relationship between amino acid composition and concentration and the type of microbial activity (e.g., sulfate reduction or methane production) can be identified. The THAA (total hydrolyzable amino acids) values range between 2.45 and 17.31 µmol/L, averaging 7.14 µmol/L. The mean concentrations and relative abundance values of acidic, basic, neutral, aromatic, and sulfur-containing amino acids are 1.34 (18%), 1.09 (15%), 3.93 (54%), 0.50 (8%), and 0.02 (0%) µmol/L, respectively. Glycine is the most abundant amino acid residue, with serine, glutamic acid, and ornithine next. The DFAA (dissolved free amino acids) values range from 0.10 to 12.73 µmol/L, averaging 4.07 µmol/L. The acidic, basic, neutral, aromatic, and sulfurcontaining amino acids are on average 0.21, 0.79, 2.56, 0.41, and 0.01 µmol/L, respectively. The relative abundances of acidic, basic, neutral, and aromatic amino acids average 4%, 18%, 58%, and 15%, respectively. Predominance of DFAA over DCAA (dissolved combined amino acids) in interstitial waters of Lithologic Units I and II is contrary to the predominance of DCAA over DFAA in other interstitial waters and seawater. The comparison of amino acid compositions between DCAA and siliceous plankton suggests that the DCAA in interstitial waters originally comes from amino acids derived from siliceous plankton. However, other sources which are much enriched in glutamic acid contribute to the DCAA composition.
Resumo:
The study presented in this PhD memory aim at better define and quantify the present timeerosion processes in glacial and proglacial domain. The Glacier des Bossons, situated in theMont-Blanc massif (Haute-Savoie, France), is a good example of a natural and nonanthropizedsystem which allows us to study this topic. This glacier lies on two mainlithologies (the Mont-Blanc granite and the metamorphic bedrock) and this peculiarity is usedto determine the origin of the glacial sediments. The sediments were sampled at the glaciersurface and at the glacier sole and also in the subglacial streams in order to understand themechanisms of mechanical erosion and particle transportation in glacial domain. The study ofthe granulometric distribution and the origin of the sediments were performed by a lithologicanalysis at macro-scale (naked-eye) and a geochemical analysis at micro-scale (U-Pb datingof zircons). These analyses allowed specifying the characteristics of glacial erosion andtransport. (1) the supraglacial sediments derived from the erosion of the rocky valley sides aremainly coarse and the glacial transport does not mix these clasts with those derived from thesub-glacial erosion, except in the lower tongue; (2) the sub-glacial erosion rates areinhomogeneous, erosion under the temperate glacier (0.4-0.8 mm/yr) is at least sixteen timesmore efficient than the erosion under the cold glacier (0.025-0.05 mm/yr); (3) the sub-glacialsediments contain a silty and sandy fraction, resulting from processes of abrasion andcrushing, which is evacuated by sub-glacial streams. The high-resolution temporal acquisitionof hydro-sedimentary data during the 2010 melt season, between the May 5th and theSeptember 17th, allowed defining the seasonal behavior of the hydrologic and sedimentaryfluxes. The sediment exportation occurs mainly during the melt season therefore, quantify thesediment fluxes in the Bossons stream and measure regularly the topographic evolution of thefluvio-glacial system allows to perform a sedimentary balance of the erosion of glacial andnon-glacial domains. During the year 2010, about 3000 tons of sediments were eroded with430 tons settled on the fluvio-glacial system. By analyzing the evolution of suspendedparticulate matter concentrations in the Bossons stream upstream and downstream the fluvioglacialsystem, the part of glacial erosion and non-glacial denudation in the sedimentarybalance could be proportioned. The erosion during the stormy events of the uncoveredmoraines, confining the fluvio-glacial system of the Bossons stream, furnishes at least 59% ofthe sediments exported by the Bossons stream and glacial erosion (41% of the flux) istherefore less efficient comparatively. The long-term evolution of the glacial systems inperiod of global warming would show a sustained erosion of proglacial environments(mountain sides and moraines) recently exposed and therefore an increasing of the detritalfluxes. The Glacier des Bossons protects the summit of the Mont-Blanc, the differentialerosion between zones under the ice and non-glacial could lead to an increase of thedifference of altitude between valleys and summits.
Resumo:
Gullfaks is one of the four major Norwegian oil and gas fields, located in the northeastern edge of the North Sea Plateau. Tommeliten lies in the greater Ekofisk area in the central North Sea. During the cruises HE 208 and AL 267 several seep locations of the North Sea were visited. At the Heincke seep at Gullfaks, sediments were sampled in May 2004 (HE 208) using a video-guided multiple corer system (MUC; Octopus, Kiel). The samples were recovered from an area densely covered with bacterial mats where gas ebullition was observed. The coarse sands limited MUC penetration depth to maximal 30 centimeters and the highly permeable sands did not allow for a high-resolution, vertical subsampling because of pore water loss. The gas flare mapping and videographic observation at Tommeliten indicated an area of gas emission with a few small patches of bacterial mats with diameters <50 cm from most of which a single stream of gas bubbles emerged. The patches were spaced apart by 10-100 m. Sampling of sediments covered by bacterial mats was only possible with 3 small push cores (3.8 cm diameter) mounted to ROV Cherokee. These cores were sampled in 3 cm intervals. Lipid biomarker extraction from 10 -17 g wet sediment was carried out as described in detail elsewhere (Elvert et al., 2003; doi:10.1080/01490450303894). Briefly, defined concentrations of cholestane, nonadecanol and nonadecanolic acid with known delta 13C-values were added to the sediments prior to extraction as internal standards for the hydrocarbon, alcohol and fatty acid fraction, respectively. Total lipid extracts were obtained from the sediment by ultrasonification with organic solvents of decreasing polarity. Esterified fatty acids (FAs) were cleaved from the glycerol head group by saponification with methanolic KOH solution. From this mixture, the neutral fraction was extracted with hexane. After subsequent acidification, FAs were extracted with hexane. For analysis, FAs were methylated using BF3 in methanol yielding fatty acid methyl esters (FAMES). The fixation for total cell counts and CARD-FISH were performed on-board directly after sampling. For both methods, sediments were fixed in formaldehyde solution. After two hours, aliquots for CARD-FISH staining were washed with 1* PBS (10mmol/l sodium phosphate solution, 130mmol/l NaCl, adjusted to a pH of 7.2) and finally stored in a 1:1 PBS:ethanol solution at -20°C until further processing. Samples for total cell counts were stored in formalin at 4°C until analysis. For sandy samples, the total cell count/CARD-FISH protocol was optimized to separate sand particles from the cells. Cells were dislodged from sediment grains and brought into solution with the supernatant by sonicating each sample onice for 2 minutes at 50W. This procedure was repeated four times and supernatants were combined. The sediment samples were brought to a final dilution of 1:2000 to 1:4000 and filtered onto 0.2µm GTTP filters (Millipore, Eschbonn, Germany).
Resumo:
A biostratigraphically continuous, but intensely bioturbated, Cretaceous/Tertiary boundary sequence was cored during Ocean Drilling Program (ODP) Leg 113 on Maud Rise (65°S) in the Weddell Sea off East Antarctica. This interval is the first recovered by ODP/DSDP in the South Atlantic sector of the Southern Ocean and offers a unique opportunity to study the nannofossil sequences leading up to and beyond the terminal Cretaceous event at a high southern latitude. The K/T boundary lies just within Chron 29R and is placed at ODP Sample 113-690C-15X-4, 41.5 cm. An iridium anomaly was independently noted at about this level as well. Upper Maestrichtian-lower Paleocene sediments consist mostly of light-colored nannofossil chalks. Dark brown sediments at the base of the Danian (Zone CPla) are characterized by an increased clay content attributed to a drop in calcareous microplankton productivity following the terminal Cretaceous event. Although delineation of the boundary is hampered by intense bioturbation, the sharp color contrast between overlying clay-rich, dark brown chalks of the Tertiary and light cream colored chalks of the Cretaceous aids in the selection of the K/T horizon. Several dark colored burrows sampled at intervals as far as 1.3 m below the boundary and within the light colored Cretaceous chalk were found to contain up to 17% Tertiary nannofossils. Calcareous nannofossils from the boundary interval were divided into three groups for quantitative study. The three groups, "Cretaceous," "Tertiary," and "Survivor," exhibit a sequential change across the boundary with the Cretaceous forms giving way to a Survivor-dominated assemblage beginning at the boundary followed shortly thereafter by the appearance of the Tertiary taxa, Cruciplacolithus and Hornibrookina. The species, H. edwardsii, comprises nearly 50% of the assemblage just above the Zone CPla/CPlb boundary, an abundance not reported elsewhere at this level. Calculation of individual species abundances reveals several additional differences between this K/T boundary interval and those studied from middle and low latitude sections. The percentage of Thoracosphaera is much lower at the boundary in this section and a small form, Prediscosphaera stoveri, is extremely abundant in Cretaceous sediments just below the boundary.
Resumo:
The Paleocene/Eocene Thermal Maximum (PETM) was a transient interval of global warming ~55 m.y. ago associated with transformation of ecosystems and changes in carbon cycling. The event was caused by the input of massive amounts of CO2 or CH4 to the ocean-atmosphere system. Rapid shoaling of the lysocline and calcite compensation depth (CCD) is a predicted response of CO2 or CH4 input; however, the extent of this shoaling is poorly constrained. Investigation of Ocean Drilling Program (ODP) Sites 1209-1212 at Shatsky Rise, which lies along a depth transect, suggests a minimum lysocline shoaling of ~500 m in the tropical Pacific Ocean during the PETM. The sites also show evidence of CaCO3 dissolution within the sediment column, carbonate "burn-down" below the level of the carbon isotope excursion, and a predicted response to a rapid change in deepwater carbonate saturation. Close examination of several foraminiferal preservation proxies (i.e., fragmentation, benthic/planktonic foraminiferal ratios, coarse fraction, and CaCO3 content) and observations of foraminifers reveal that increased fragmentation levels most reliably predict intervals with visually impoverished foraminiferal preservation as a result of dissolution. Low CaCO3 content and high benthic/planktonic ratios also mirror intervals of poorest preservation.
Resumo:
Biogenic components of sediment accumulated at high rates beneath frontal zones of the Indian and Pacific oceans during the late Miocene and early Pliocene. The delta13C of bulk and foraminiferal carbonate also decreased during this time interval. Although the two observations may be causally linked, and signify a major perturbation in global biogeochemical cycling, no site beneath a frontal zone has independent records of export production and delta13C on multiple carbonate phases across the critical interval of interest. Deep Sea Drilling Project (DSDP) site 590 lies beneath the Tasman Front (TF), an eddy-generating jetstream in the southwest Pacific Ocean. To complement previous delta13C records of planktic and benthic foraminifera at this location, late Neogene records of CaCO3 mass accumulation rate (MAR), Ca/Ti, Ba/Ti, Al/Ti, and of bulk carbonate and foraminiferal delta13C were constructed at site 590. The delta13C records include bulk sediment, bulk sediment fractions (<63 µm and 5-25 µm), and the planktic foraminifera Globigerina bulloides, Globigerinoides sacculifer (with and without sac), and Orbulina universa. Using current time scales, CaCO3 MARs, Ca/Ti, Al/Ti and Ba/Ti ratios are two to three times higher in upper Miocene and lower Pliocene sediment relative to overlying and underlying units. A significant decrease also occurs in all delta13C records. All evidence indicates that enhanced export production - the 'biogenic bloom' - extended to the southwest Pacific Ocean between ca. 9 and 3.8 Ma, and this phenomenon is coupled with changes in delta13C - the 'Chron C3AR carbon shift'. However, CaCO3 MARs peak ca. 5 Ma whereas elemental ratios are highest ca. 6.5 Ma; foraminiferal delta13C starts to decrease ca. 8 Ma whereas bulk carbonate delta13C begins to drop ca. 5.6 Ma. Temporal discrepancies between the records can be explained by changes in the upwelling regime at the TF, perhaps signifying a link between changes in ocean-atmosphere circulation change and widespread primary productivity.
Resumo:
The scope of this research was to find out, how important is the presence of brackish water for the formation of the characteristical littoral subsoil fauna in the interstitial spaces of beaches. There is little precipitation in the Red Sea area and therefore little influence of freshwater on the beach. Moreover, the sandy beach of Sarso Island (Farasan Archipelago) is bordered landwards and underneath by solid limestone, preventing subsoil fresh water, if there is any, from penetrating into the beach region. The salinity of the interstitial water from Sarso beach lies a little above the salinity of the adjacent sea. The microfauna of Sarso beach is composed to a rather big proportion of such species that are known to be characteristical littoral subsoil water species, partially of world wide distribution. The ecological analysis of this fauna, i.e. the freeliving Nematodes, reveals the presence of two distinct associations: 1. the association of the low level subsoil region, close to the sea, with clear interstitial water, subject to regular exchange with the water of the adjcent sea. 2. the association of the high level subsoil region, 4-10 meter distant from the sea, with brownish water. Contrary to earlier results there is no distinction in salinity between the two associations, so it is not longer justified to apply the term brackish water fauna on the animals living in the association of the high level subsoil region.
Resumo:
Living (Rose Bengal stained) benthic foraminifera were collected with a multicorer from six stations between 2°N and 12°S off West Africa. The foraminiferal communities in the investigated area reflect the direct influence of different productivity regimes, and are characterized by spatially and seasonally varying upwelling activity. At five stations, foraminiferal abundance coincides well with the gradient of surface productivity. However, at one station off the Congo River, the influence of strong fresh water discharge is documented. Although this station lies directly in the center of an upwelling area, foraminiferal standing stocks are surprisingly low. It is suggested that the Congo discharge may induce a fractionation of the organic matter into small and light particles of low nutritional content, by contrast to the relatively fast-sinking aggregates found in the centers of high productivity areas. Quality and quantity of the organic matter seem to influence the distribution of microhabitats as well. The flux of organic carbon to the sea-floor controls the sequence of degradation of organic matter in sediment and the position of different redox fronts. The vertical foraminiferal stratification within sediment closely parallels the distribution of oxygen and nitrate in porewater, and reflects different nutritive strategies and adaptation to different types of organic matter. The epifauna and shallow infauna colonize oxygenated sediments where labile organic matter is available. The intermediate infauna (M. barleeanum) is linked to the zone of nitrate reduction in sediments where epifaunal and shallow infaunal species are not competitive anymore, and must feed on bacterial biomass or on metabolizable nutritious particles produced by bacterial degradation of more refractory organic matter. The deep infauna shows its maximum distribution in anoxic sediments, where no easily metabolizable organic matter is available.
Resumo:
Ousteri Lake is popularly called Ousteri which is a word formed out of the fusion of Tamil words Oussudu (a proper noun) and eri (meaning a lake). Ousteri is an inter-state lake about 50 percent of its waterspread lies in Puducherry and the rest in Tamil Nadu of India. The landscape survey of the entire Ousteri Lake has been collected and reported in the article. Additionally provides feedback from all category of stakeholders to identify whether the Ousteri lake is worth to be recognised under Ramsar Convention or not.
Resumo:
We present new Holocene century to millennial-scale proxies for the well-dated piston core MD99-2269 from Húnaflóadjúp on the North Iceland Shelf. The core is located in 365 mwd and lies close to the fluctuating boundary between Atlantic and Arctic/Polar waters. The proxies are: alkenone-based SST°C, and Mg/Ca SST°C estimates and stable d13C and d18O values on planktonic and benthic foraminifera. The data were converted to 60 yr equi-spaced time-series. Significant trends in the data were extracted using Singular Spectrum Analysis and these accounted for between 50% and 70% of the variance. A comparison between these data with previously published climate proxies from MD99-2269 was carried out on a data set which consisted of 14-variable data set covering the interval 400-9200 cal yr BP at 100 yr time steps. This analysis indicated that the 1st two PC axes accounted for 57% of the variability with high loadings clustering primarily into "nutrient" and "temperature" proxies. Clustering on the 100 yr time-series indicated major changes in environment at ~6350 and ~3450 cal yr BP, which define early, mid- and late Holocene climatic intervals. We argue that a pervasive freshwater cap during the early Holocene resulted in warm SST°s, a stratified water column, and a depleted nutrient supply. The loss of the freshwater layer in the mid-Holocene resulted in high carbonate production, and the late Holocene/neoglacial interval was marked by significantly more variable sea surface conditions.