266 resultados para talc


Relevância:

10.00% 10.00%

Publicador:

Resumo:

New geological and geophysical data on the Amirante Arc, which locates to the south of the Seychelles Islands, are presented. These data were obtained by Pacific Oceanological Institute during the 33-rd cruise of R/V Professor Bogorov in 1990. The Amirante Arc represents a seamount chain, which has submeridional strike and total length about 400 km. To the west of the Amirante Arc there are a deep sea trench and a back-arc basin, i.e. this area is characterized by structural elements associated with the subduction zone of Western Pacific type. According to our data the Amirante Arc is composed by tholeiites of ocean plateau type. This facts are evidences that the Amirante Arc differs from typical Pacific island arcs. This gives an opportunity to distinguish a special type of oceanic structures, i.e. non-volcanic (amagmatic) ridges. The Amirante Ridge has been probably formed as a result of oceanic crust heaping due to horizontal displacements of its blocks in the process of spreding ridge formation in the Indian Ocean during Cretaceous-Paleogene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multisensor track data, including magnetic susceptibility, gamma-ray attenuation porosity evaluator (GRAPE) wet bulk density, and natural gamma emission, were collected on all cores recovered during Ocean Drilling Program Leg 162. Data from the upper Pliocene and lower Pleistocene of Sites 981 and 984 are here compared to results from analyses of a limited set of discrete samples, including benthic foraminiferal isotopic composition, grain size, carbonate content, abundance of foraminifers and lithic particles, and clay mineralogy. Natural gamma emission most closely monitors the input of felsic terrigenous material to these two sites. Magnetic susceptibility also tracks felsic terrigenous input at Site 981 but appears to reflect a separate, more mafic, terrigenous component at Site 984. The GRAPE record does not correlate well with any discretely measured variable at Sites 981 or 984.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Primary and secondary mineral phases from Holes 1268A (11 samples), 1272A (9 samples), and 1274A (12 samples) were analyzed by electron microprobe in Bonn and Cologne (Germany). Bulk rock powders of these samples were also analyzed geochemically, including major and trace elements (Paulick et al., 2006, doi:10.1016/j.chemgeo.2006.04.011). Ocean Drilling Program (ODP) Leg 209 Holes 1268A, 1272A, and 1274A differ remarkably in alteration intensity and mineralogy, and details regarding their lithologic characteristics are presented in Bach et al. (2004, doi:10.1029/2004GC000744) and Shipboard Scientific Party (2004, doi:10.2973/odp.proc.ir.209.101.2004). Because of the least altered character of peridotite in Hole 1274A, abundant clinopyroxene, orthopyroxene, olivine, and spinel were analyzed at this site. In Hole 1272A, primary silicates are rare and analyses were restricted to some samples that contain traces of olivine and orthopyroxene. Because of the intensity of alteration, Hole 1268A is devoid of primary phases except spinel. Commonly, alteration is pseudomorphic and serpentinization of olivine and orthopyroxene can be distinguished. Accordingly, compositional variations of the alteration minerals with regard to the precursor minerals are one of the issues investigated in this data report.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Snake Pit active hydrothermal field was discovered at 23°22'N on the Mid-Atlantic Ridge during ODP Leg 106. Among the ten holes drilled in the mound at the foot of an active chimney, only three (649B, 649F, and 649G) had substantial recovery, and produced cores of unconsolidated hydrothermal deposit made up of porous sulfide fragments with minor talc pellets and biological debris, and a few pieces of brassy massive sulfides. Eight representative samples from the 6.5-m-long core from Hole 649B were analyzed for bulk chemistry, both by XRF (major elements) and NAA (trace elements). Major elements average compositions show high Fe (36 wt%), S (37 wt%), and Cu (12 wt%) contents, and minor Zn (6.7 wt%), reflecting a mostly high-temperature deposit. Trace elements are characterized by a high Au content (600 ppb) which could express the maturity of the mound. Mineralogical assemblages show evidence of sequential precipitation, and absence of equilibrium. Major sulfide phases are pyrrhotite, pyrite, Fe, Cu sulfides, marcasite, and sphalerite. Three types of samples are distinguished on the basis of textures and mineral assemblages: type 1, rich in pyrrhotite, with approximately equivalent amounts of Cu, Fe sulfides, and sphalerite and minor pyrite; type 2, rich in Cu, Fe sulfides, which are cubic cubanite with exsolutions and rims of chalcopyrite; and type 3, essentially made up of sphalerite. Type 2 samples likely represent fragments of the inner chimney wall. The presence of talc intergrown with cubic cubanite/chalcopyrite in one big piece from Hole 649G is probably related to mixing of the hydrothermal fluid with seawater.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Replacement minerals in olivine record the evolution of hydrothermal alteration between 1600 and 2000 mbsf in the sheeted dike complex in Hole 504B. 1. Talc (+ magnetite) rim on olivine represents the earliest alteration. Talc probably crystallized during initial cooling of the dikes. 2. The partial breakdown of talc to "deweylite", a chaotic mixture of serpentine and Al-free stevensite, was facilitated by further cooling and a somewhat increased fluid:rock interaction in the dikes. 3. The presence of chlorite veins and the replacement of unaltered olivine cores, talc, and deweylite and of other silicates by chlorite suggest fracturing of the rocks during cooling (shrinkage cracks) and local influx of seawater into the dikes. 4. Late amphibole veins and locally extensive amphibole alteration indicate increasing temperature and the development of new sets of fractures, possibly due to the injection of fresh magma. Several generations of chlorite and amphibole veins are present in the dikes. Offset veins and the crack-seal texture within veins in the dikes suggest that the alteration cycle was probably repeated with the injection of each set of new dikes. Presently measured temperatures (195°C) at 2000 m depth in Hole 504B indicate that deweylite, which was previously considered a low-temperature mineral, can form well above its previously estimated crystallization temperature of 50°C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Basalts recovered from Hole 504B during ODP Leg 111 are more or less altered, but there is no sign of strong shear stress or widespread penetrative deformation; hence, they retain well their primary (igneous) structures and textures. The effect of alteration is recognized as the partial or total replacement of primary minerals (olivine, clinopyroxene, and plagioclase) by secondary minerals and as the development of secondary minerals in open spaces (e.g., veins, fractures, vugs, or breccia matrix). The secondary minerals include zeolite (laumontite and stilbite), prehnite, chlorite, epidote, Plagioclase (albite and/or oligoclase), amphibole (anthophyllite, cummingtonite, actinolite, and hornblende), sodic augite, sphene, talc, anhydrite, chalcopyrite, pyrite, Fe-Ti oxide, and quartz. Selected secondary minerals from several tens of samples were analyzed by means of an electron-probe microanalyzer; the results are presented along with brief considerations of their compositional features. In terms of the model basaltic system, the following two types of low-variance (three-phase) mineral assemblages were observed: prehnite-epidote-laumontite and prehnite-actinolite-epidote; both include chlorite, albite and/or oligoclase, sphene, and quartz. The mineral parageneses delineated by these low-variance mineral assemblages suggest that the metamorphic grade ranges from the zeolite facies to the prehnite-actinolite facies. The common occurrence of prehnite indicates that greenschist facies conditions were not attained even in the deepest level of Hole 504B, which, in a strict sense, contradicts the previous interpretation that the lower portion of Hole 504B suffered greenschist facies alteration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hole 504B, drilled into the 5.9 Ma crust of the southern flank of the Costa Rica Rift, tapped a hydrothermal system in its conductive stage. Three alteration zones were encountered along the 561.5 meters of basement drilled. The upper alteration zone, 274.5 to 584.5 meters below the seafloor (BSF), is characterized by the presence of color zonation in which red halos are located between dark gray inner rock portions and dark gray outer bands. The red halos are characterized by an abundance of iddingsite, and they have higher K2O contents and Fe3+/FeT ratios, but lower SiO2 contents, than the adjacent dark gray inner zones. The dark gray outer bands are characterized by the presence of celadonite-nontronite. Saponite is omnipresent in these three alteration bands. Phillipsite is the only zeolite that occurs in the upper alteration zone. The upper alteration zone is interpreted as being the result of low-temperature alteration, with large amounts of cold oxygenated seawater percolating through the upper ocean crust. In the upper alteration zone, the formation of red halos was both preceded and followed by formation of dark gray outer bands. Then followed formation of dark gray cores. The lower alteration zone (584.5-835.5 m BSF) is characterized by the absence of color zonation, the downward-increasing abundance of pyrite and saponite, and the presence of quartz, talc, and calcite. The chemical changes (downhole MgO enrichment and concomitant CaO depletion) observed in the basalts of the lower alteration zone are thought to result from reactions of oceanic basalts with evolved seawater (i.e., solutions derived from seawater that has already reacted with ocean crust), which is thus depleted in oxygen, potassium, and radiogenic strontium. This alteration process, which was responsible for saponite formation in both the upper and lower alteration zones, was rock dominated, and it took place under suboxic to anoxic conditions during a second stage of alteration. Reaction temperatures could have progressively increased with depth. There is also a zeolitic zone that essentially coincides with the lower part of the upper alteration zone (between 528.5 and 563 m BSF). The host rock adjacent to veins of zeolite exhibits a greenish discoloration due to the intensive replacement of the igneous minerals. The replacement minerals result in significant increases in the bulk rock K2O, MgO, CaO, CO2, and H2O+ contents. The solutions circulating along the newly opened fissures had high Ca activity, and minerals probably precipitated in these fissures at 60°C or 110°C. These hydrothermal solutions circulated later than those responsible for the formation of the minerals that characterize the upper and lower alteration zones.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In three veins from the lower part of Deep Sea Drilling Project Hole 504B, 298 meters below the top of basement, primary augite is replaced by aegirine-augite. This transformation occurs only in subophitic basalts, at the contact with veins which always include a dark-olive, Mg-rich clay mineral. Talc occurs in one of these veins; it can be regarded either as a vein constituent or as a product of augite alteration. Melanite (Ca,Fe,Ti-rich garnet) appears in only one of these three veins, where a Ca-carbonate is associated with a Mg-rich clay mineral. The occurrence of melanite in Hole 504B could be due to the conjunction of particular conditions: (1) basalt with a subophitic texture, (2) presence of hydrothermal fluids carrying Ca, Fe, Si, Ti, Al, Mg, and Na, (3) rather high temperatures. Possibly the melanite and aegirine-augite formed by deuteric alteration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Secondary minerals in basalts from Holes 495 and 500 include smectite and chlorite, both of which have partially replaced the basalt groundmass. In addition to these two minerals, amphibole, laumontite, albite, and a corrensitelike mineral are present in Holes 499B and 499C. Smectite, chlorite, talc, calcite, phillipsite, mica, and mixed-layer chlorite-montmorillonite also fill veins in the basalts of Hole 495. The secondary mineral assemblages from Site 499 are characteristic of the initial stage of greenschist facies metamorphism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abyssal peridotite from the 15°20'N area of the Mid-Atlantic Ridge show complex geochemical variations among the different sites drilled during ODP Leg 209. Major element compositions indicate variable degrees of melt depletion and refertilization as well as local hydrothermal metasomatism. Strongest evidence for melt-rock interactions are correlated Light Rare Earth Element (LREE) and High Field Strength Element (HFSE) additions at Sites 1270 and 1271. In contrast, hydrothermal alteration at Sites 1274, 1272, and 1268 causes LREE mobility associated with minor HFSE variability, reflecting the low solubility of HFSE in aqueous solutions. Site 1274 contains the least-altered, highly refractory, peridotite with strong depletion in LREE and shows a gradual increase in the intensity of isochemical serpentinization; except for the addition of H2O which causes a mass gain of up to 20 g/100 g. The formation of magnetite is reflected in decreasing Fe(2+)/Fe(3+) ratios. This style of alteration is referred to as rock-dominated serpentinization. In contrast, fluid-dominated serpentinization at Site 1268 is characterized by gains in sulfur and development of U-shaped REE pattern with strong positive Eu anomalies which are also characteristic for hot (350 to 400°C) vent-type fluids discharging from black smoker fields. Serpentinites at Site 1268 were overprinted by talc alteration under static conditions due to interaction with high a_SiO2 fluids causing the development of smooth, LREE enriched patterns with pronounced negative Eu anomalies. These results show that hydrothermal fluid-peridotite and fluid-serpentinite interaction processes are an important factor regarding the budget of exchange processes between the lithosphere and the hydrosphere in slow spreading environments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

How the micro-scale fabric of clay-rich mudstone evolves during consolidation in early burial is critical to how they are interpreted in the deeper portions of sedimentary basins. Core samples from the Integrated Ocean Drilling Program Expedition 308, Ursa Basin, Gulf of Mexico, covering seafloor to 600 meters below sea floor (mbsf) are ideal for studying the micro-scale fabric of mudstones. Mudstones of consistent composition and grain size decrease in porosity from 80% at the seafloor to 37% at 600 mbsf. Argon-ion milling produces flat surfaces to image this pore evolution over a vertical effective stress range of 0.25 (71 mbsf) to 4.05 MPa (597 mbsf). With increasing burial, pores become elongated, mean pore size decreases, and there is preferential loss of the largest pores. There is a small increase in clay mineral preferred orientation as recorded by high resolution X-ray goniometry with burial.