41 resultados para spinels


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Four petrographic lava types occur, ranging from aphyric to moderately phyric clinopyroxene-olivine tholeiitic basalts (Unit 1); olivine-clinopyroxene picritic basalts, sparsely to strongly olivine-phyric (Unit 3-type); olivine-clinopyroxene basalts (clinopyroxene dominant) (Unit 4); and moderately to strongly phyric two-pyroxene-plagioclase basaltic andesites (Unit 9-type). The olivine phyric lavas contain forsteritic olivines (extending to Fo92), and very magnesian Cr-rich spinels similar to those occurring in boninitic lavas. The basaltic andesites are mineralogically and petrographically indistinguishable from the modern Tofua Arc basaltic andesites, one notable feature being the highly calcic cores in plagioclase phenocrysts (up to An95). The forsteritic olivines, the Cr-spinels, and the calcic plagioclases are unlikely to have been precipitated in the lava compositions in which they occur, and are thought to have been incorporated from highly primitive melts by way of mixing processes (as advocated by Allan, this volume). Notwithstanding the evidence for mixing, the major element chemistries of the Unit 1- and Unit 9-type lavas are shown to be consistent with the derivation of the Unit 9-type basaltic andesites by means of fractional crystallization, through magmas of similar chemistry to Unit 1. Some trace element discrepancies in the modeling, and the relative volcanic stratigraphy of Site 839, however, preclude a direct liquid line of descent between the actual recovered units. Trace element data as well as TiO2 and Na2O data clearly illustrate the arc-like affinities of the magmas, with strong highfield-strength element depletion and large-ion-lithophile element enrichment. The abundance patterns are very close to those of the Tofua and Kermadec arc magmas, and also Valu Fa. Pb-, Sr-, and Nd-isotopic compositions indicate closest affinities with a "Pacific" MORB source, apparently characteristic of the western, older part of the Lau Basin. A subduction-related isotopic contribution is, however, inferred. The sources of the Site 839 magmas are thus inferred to be similar to, but less depleted geochemically, than those of the modern Tofua Arc magmas. The Site 839 sequence is interpreted as an older remnant of a volcanic construct of the "proto-Tofua arc", originally developed adjacent to the Tonga Ridge. Opening of the eastern Lau Basin, because of southward migrating propagators, has split and isolated the sequence, leaving it stranded within the modern Lau Basin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study presents electron microprobe data for dunite xenoliths from a lamprophyre dyke located on the island of Qeqertaa, West Greenland. The minimum age of this dyke is Palaeoproterozoic and it experienced amphibolite facies metamorphism and deformation during that era. The samples consist of nearly 200 xenoliths with a size range of 0.5-8 cm. These dunite xenoliths have olivine Mg#, that range from 80.3 to 94.6 (n = 579) with a mean of 92.6. Orthopyroxene is found in three xenoliths and garnet in five others. The latter suggests the depth of the Qeqertaa xenolith suite to be near the diamond stability-field, which is substantiated by the finding of diamonds in bulk samples of the Qeqertaa dyke. This further indicates the presence of a lithospheric mantle domain dominated by high-Mg# dunite to this depth in Palaeoproterozoic time. Cr-rich spinel, in the 0.1-0.2 mm size range, is found within and between olivine grains in individual xenoliths. These Cr-spinels yield Fe-Mg exchange temperatures of 400-600°C. However, the presence of intermediate spinel compositions spanning the lower temperature solvus suggests that equilibration temperatures were >550°C. Fe3+#, expressed as 100xFe3+/(Fe3++Al+Cr)), is shown to be a useful parameter in order to screen for altered spinel (Fe3+#>10) with disturbed Mg# and Cr#. The screened spinel data (Fe3+#<10) show a distinctly different trend in terms of spinel Cr# versus Mg#, compared to unmetamorphosed xenoliths in Tertiary lavas and dikes from Ubekendt Ejland and Wiedemann Fjord, respectively, also located within the North Atlantic craton. This difference likely reflects amphibolite facies metamorphic resetting of the Qeqertaa xenolith suite by Fe-Mg exchange. Given the similarity of the Qeqertaa xenolith suite with the Ubekendt and Wiedemann suites, in terms of their olivine Mg# and spinel Cr# distribution, high-Mg# dunite is likely to be an important component of the subcontinental lithospheric mantle beneath the North Atlantic craton and appears to have spanned a vertical distance of at least 150 km in this region, even during the Palaeoproterozoic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The basement cored at Site 1201 (west Philippine Basin) during Ocean Drilling Program Leg 195 consists of a 91-m-thick sequence of basalts, mostly pillow lavas and perhaps one sheet lava flow, with a few intercalations of hyaloclastite and interpillow sedimentary material. Hydrothermal alteration pervasively affected the basalt sequence, giving rise to a variety of secondary minerals such as K-Fe-Mg-clay minerals, oxyhydroxides and clay minerals mixtures, natrolite group zeolites, analcite, alkali feldspar, and carbonate. The primary minerals of pillow and sheet basalts that survived the intense hydrothermal alteration were investigated by electron microprobe with the aim of characterizing their chemical composition and variability. The primary minerals are mostly plagioclase, ranging in composition from bytownite through labradorite to andesine, chromian-magnesian-diopside, and spinels, both Ti magnetite (partially maghemitized) and chromian spinel. Overall, the chemical features of the primary minerals of Site 1201 basalts correspond to the primitive character of the bulk rocks, suggesting that the parent magma of these basalts was a mafic tholeiitic magma that most likely only suffered limited fractional crystallization and crystallized at high temperatures (slightly below 1200°C) and under increasing fO2 conditions. The major element composition of clinopyroxene suggests a backarc affinity of the mantle source of Site 1201 basement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over most of the Gulf of Mexico and Caribbean a hiatus is present between the lower upper Maastrichtian and lowermost Tertiary deposits; sedimentation resumed ~200 ka (upper zone Pla) after the K-T boundary. Current-bedded volcaniclastic sedimentary rocks at Deep Sea Drilling Project (DSDP) Sites 536 and 540, which were previously interpreted as impact-generated megawave deposits of K-T boundary age, are biostratigraphically of pre-K-T boundary age and probably represent turbidite or gravity-How deposits. The top 10 to 20 cm of this deposit at Site 536 contains very rare Micula prinsii, the uppermost Maastrichtian index taxon, as well as low values of Ir (0.6 pbb) and rare Ni-rich spinels. These indicate possible reworking of sediments of K-T boundary age at the hiatus. Absence of continuous sediment accumulation across the K-T boundary in the 16 Gulf of Mexico and Caribbean sections examined prevents their providing evidence of impact-generated megawave deposits in this region. Our study indicates that the most complete trans-K-T stratigraphic records may be found in onshore marine sections of Mexico, Cuba, and Haiti. The stratigraphic records of these areas should be investigated further for evidence of impact deposits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ocean Drilling Program Leg 125 recovered serpentined harzburgites and dunites from a total of jive sites on the crests and flanks of two serpen finite seamounts, Conical Seamount in the Mariana forearc and Torishima Forearc Seamount in the Izu-Bonin forearc. These are some of the first extant forearc peridotites reported in the literature and they provide a window into oceanic, supra-subduction zone (SSZ) mantle processes. Harzbutrgites from both seamounts are very refractory with low modal clinopyroxene (<4%), chrome-rich spinels (cx-number = 0.40-0.80), very low incompatible element contents, and (with the exception of amphibole-bearing samples) U-shaped rare earth element (REE) profiles with positive Eu anomalies. Both sets of peridotites have olivine-spinel equilibration temperatures that are low compared with abyssal peridotites, possibly because of water-assisted diffusional equilibration in the SSZ environment However, other features indicate that the harzburgites from the two seamounts have very different origins. Harzburgites from Conical Seamount are characterized by calculated oxygen fugacities between FMQ (fayalite- magnetite- quartz) - 1.1 (log units) and FMQ + 0.4 which overlap those of mid-ocean ridge basalt (MORB) peridotites. Dunites from Conical Seamotmt contain small amounts of clinopyroxene, orthopyroxene and amphibole and are light REE (LREE) enriched. Moreover; they are considerably more oxidized than the harzburgites to which they are spatially related, with calculated oxygen fugacities of FMQ -0.2 toFMQ + 1.2. Using textural and geochemical evidence, we interpret these harzburgites as residual MORB mantle (from 15 to 20 % fractional melting) which has subsequently been modified by interaction with boninitic melt ivithin the mantle wedge, and these dunites as zones of focusing of this melt in which pyroxene has preferentially been dissolved from the harzbutgite protolith. In contrast, harzburgites from Torishima Forearc Seamount give calculated oxygen fugacities between FMQ + 0.8 and FMQ + l.6, similar to those calculated for other subduction-zone related peridotites and similar to those calculated for the dunites (FMQ + 1.2 to FMQ + 1.8) from the same seamount. In this case, we interpret both the harzburgites and dunites as linked to mantle melting (20-25 % fractional melting) in a supra-subduction zone environment The results thus indicate that the forearc is underlain by at least two types of mantle lithosphere, one being trapped or accreted oceanic lithosphere, the other being lithosphere formed by subduction-related melting. They also demonstrate that both types of mantle lithosphere may have undergone extensive interaction with subduction-derived magmas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eleven serpentine samples from DSDP Leg 84 and four serpentinized ultramafic samples from Costa Rica and Guatemala were described and their relict mineral compositions measured by electron microprobe to try to determine the origin of the Leg 84 serpentinites and their relationship to the ultramafic rocks of the onshore ophiolites. The Leg 84 samples comprise more than 90% secondary minerals, principally serpentine, with hematitic and opaque oxides, and minor talc and smectites. Four distinct textural types can be identified according to the distribution of opaque phases and smectite. Remnants of spinel, olivine, orthopyroxene, and clinopyroxene occur variously in the samples; spinal occurs in all the samples. Textural evidence suggests that the serpentinites were originally clinopyroxene-bearing harzburgites. Relict mineral compositions are refractory and relatively uniform: olivine, Fo90.6-90.9; orthopyroxene, En90-91; clinopyroxene, Wo47 En50 Fs3; spinels, Cr/Cr + Al = 0.4-0.6. 567A-29-2, 30-35 cm has slightly more magnesian olivines (Fo92) and orthopyroxene, and more aluminous spinels (Cr/Cr + Al = 0.3). These compositions are similar to those inferred for refractory upper-mantle materials and also fall within the range of compositions for relict minerals in abyssal peridotites. They could be of oceanic origin. The onshore samples include serpentinites, a clinopyroxene-bearing harzburgite, and a clinopyroxenite. They too have magnesium-rich silicate assemblages, but relative to the drilled samples have more iron-rich olivines (Fogo) and more aluminous and sodic pyroxenes; spinels which are clearly relicts are very aluminum-rich (Cr/Cr + Al = 0.1-0.25). These samples are most likely mantle materials, but significantly less depleted. Their relationship to the drilled samples is unclear. Serpentinites were the most common basement materials recovered during Leg 84, and there appears to be a bimodal assemblage (basalt/diabase and serpentine) of igneous rocks sampled from the trench slope. Diapirism of serpentine throughout the trench slope and forearc is suggested as an explanation for this distribution of samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During Leg 109 of the Ocean Drilling Program, about 100 m of serpentinized peridotites were drilled on the western wall of the M.A.R. axial rift valley, 45 km south of the Kane Fracture Zone. The present study reports petrological and mineralogical data obtained from 29 small pieces of these ultramafic rocks, including about 60% serpentinized harzburgites, 26% serpentinized lherzolites, 14% serpentinized dunites, and one sample of olivine websterite. Modal analyses show that all these rocks are plagioclase-free four-phase peridotites equilibrated in the spinel lherzolite facies. The estimated average modal composition of the sample set is about 80% olivine, 14% opx, 5% cpx, and 1% spinel, that is, a cpx-poor lherzolite. The well developed porphyroclastic structures and mineralogical characteristics of these rocks indicate their affinity with the group of residual mantle tectonites, among the abyssal peridotites. Features typical of magmatic cumulates are lacking. The high contents in Al2O3 of the cpx (average 5.4%) and of the opx (average 4.3%) porphyroclasts, the low Cr# of the spinels (average 22.9%), and the rather high content in modal cpx (about 5%), indicate a moderate percentage of melting, of the order of 10%-15%. Site 670 peridotites plot close to the least depleted mantle rocks collected in the oceans in most diagrams used to define the average trend of the ocean-floor peridotites. Microprobe traverses across the cores of the exsolved opx and cpx porphyroclasts permitted the recalculation of the magmatic compositions of these pyroxenes: the 'primitive' opx were equilibrated at about 1300°C, probably at the end of the main melting episodes, whereas the 'primitive' cpx show lower equilibration temperatures, at about 1200°C, reflecting a more complex thermal history. The subsolidus evolution is well recorded, from 1200°C to about 950CC, by the exsolved pyroxenes and the olivine and spinel phases. Unusually high blocking temperatures, close to 1000°C, indicate that the peridotite body was cooled very rapidly between 1000°C and the beginning of serpentinization. Oxygen fugacities, calculated for 10 kb and at the blocking temperatures indicated by the olivine/spinel geothermometer, are close to the usual fugacities calculated in oceanic peridotites and basalts (of the order of 10**-10 to 10**-11, on the QFM buffer). Site 670 peridotites have compositions close to those of the peridotites collected in the Kane Fracture Zone area, and obviously belong to the moderately depleted mantle peridotites which characterize abyssal peridotites collected away from mantle plumes and oceanic islands. In particular, they differ from the highly residual harzburgites collected along the M.A.R. over the Azores bulge.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

THE chemical, mineralogical and isotopic characteristics of deposits at the Cretaceous/Tertiary (K/T) boundary are suggestive of a large impact event, the prime candidate (Sharpton et al., 1992, doi:10.1038/359819a0) being the Chicxulub crater in Yucatan, Mexico. Spinel-bearing spherules, which may be associated with such impacts, have been reported (Smit and Romein, 1985, doi:10.1016/0012-821X(85)90019-6) at several K/T boundary sites worldwide, but their origin is still uncertain. We have examined the spinel-bearing material recovered from K/T boundary deposits at site 577 in the Pacific Ocean (Heath et al., 1985, doi:10.2973/dsdp.proc.86.104.1985) and find two distinct populations of particles: spherules with dendritic spinel textures dispersed throughout the grains and irregularly shaped fragments with spinels essentially confined to the rim. The morphology and composition of the particles are characteristic of melted and partially melted meteoritic ablation debris, but their location is difficult to reconcile with an impact on the Yucatan peninsula, some 10,000 km away. We suggest instead that the spinel-bearing particles at site 577 are derived from the impact of a 2-km asteroid in the Pacific Ocean, and that several accretionary events of this type are required to explain the global distribution of spinel-bearing spherules at the K/T boundary.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Refractory spinel peridotites were drilled during Leg 125 from two diapiric serpentinite seamounts: Conical Seamount in the Mariana forearc (Sites 778-780) and Torishima Forearc Seamount (Sites 783-784) in the Izu-Ogasawara forearc. Harzburgite is the predominant rock type in the recovered samples, with subordinate dunite; no lherzolite was found. The harzburgite is diopside-free to sparsely diopside-bearing, with modal percentages of diopside that range from 0% to 2%. Spinels in the harzburgites are chrome-rich (Cr/[Cr + Al] = 0.38-0.83; Fe3+/[Fe3+ + Cr + Al] = 0.01-0.07). Olivine and orthopyroxene are magnesian (Mg# = 0.92). Discrete diopsides reveal extreme depletion of light rare earth elements. Primary hornblende is rare. The bulk major-element chemistry shows low average values of TiO2 (trace), Al2O3 (0.55%) and CaO (0.60%), but high Mg# (0.90). These rocks are more depleted than the abyssal peridotites from the mid-oceanic ridge. They are interpreted as residues of extensive partial melting (= 30%), of which the last episode was in the mantle wedge, probably associated with the generation of incipient island-arc magma, including boninite and/or arc-tholeiite. These depleted peridotites probably represent the residues of melting within mantle diapirs that developed within the mantle wedge.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coring during Ocean Drilling Program and Deep Sea Drilling Project Legs 163, 152, 104, 81, and 38 recovered sequences of altered basalt from North Atlantic seaward-dipping reflector sequences (SDRS) erupted during the initial rifting of Greenland from northern Europe and likely associated with excessive mantle temperatures caused by an impacting mantle plume head. Cr-rich spinel is found abundantly as inclusions and groundmass crystals within the olivine-rich lavas of Hole 917A (Leg 152) cored into the Southeast Greenland SDRS, but only rarely as inclusions within plagioclase in the lavas of the Vøring Plateau SDRS, and it is absent from other cored SDRS lavas from the Rockall Plateau and Southeast Greenland. Eruptive melt compositions determined from inferred, thermodynamically-defined, spinel-melt exchange equilibria indicate that the most primitive melts represented by Hole 917A basalts have Mg/(Mg + Fe2+) at least as high as 0.70 and approach near-primary mantle melt compositions. In contrast, Cr-rich spinels from Hole 338 (Leg 38) lavas on the Vøring Plateau SDRS give evidence for melt with Mg/(Mg + Fe2+) only as high as 0.64. This study underlines that primitive melts similar to those from Hole 917A comprise only a small fraction of the eruptive North Atlantic SDRS melts, and that most SDRS basalts were, in fact, too evolved to have precipitated Cr-rich spinel, with true melt Mg/(Mg + Fe2+) likely below 0.60. The evolved nature of the SDRS basalts implies large amounts of fractionation at the base of the crust or deep within it, consistent with seismic results that indicate an abnormally thick Layer 3 underlying the SDRS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The compositions of chrome spinels of Costa Rica Rift basalts from Deep Sea Drilling Project Site 505 vary depending on their occurrences as (1) inclusions in olivine crystals, (2) inclusions in Plagioclase crystals, and (3) isolated crystals in variolitic or glassy samples. The variations are a consequence of (1) changes of melt compositions as crystallization proceeds, and (2) contrasting behavior of olivine and Plagioclase in competition with spinels for Al and Mg. Some spinels have skeletal rims compositionally less magnesian than mineral cores; however, the cores do not appear to be xenocrysts, unlike some texturally similar spinels in Mid-Atlantic Ridge basalts.