75 resultados para spike and slab priors
Resumo:
Eight box cores from the tropical Atlantic were studied in detail with regard to foraminiferal oxygen isotopes, radiocarbon, and Globorotalia menardii abundance. A standard Atlantic oxygen-isotope signal was reconstructed for the last 20,000 yr. It is quite similar to the west-equatorial Pacific signal published previously. Deglaciation is seen to occur in two steps which are separated by a pause. Onset of deglaciation is after 15,000 yr B.P. The pause is centered between 11,000 and 12,000 yr B.P., but may be correlative with the Younger Dryas (10,500 yr B.P.) if allowance is made for a scale shift due to mixing processes on the sea floor. Step 2 is centered near 10,000 yr B.P. and is followed by a brief excursion toward light oxygen values. This excursion (the M event) may correlate with the Gulf of Mexico meltwater spike.
Resumo:
New petrographic and compositional data were reported for 143 samples of core recovered from Sites 832 and 833 during Ocean Drilling Program (ODP) Leg 134. Site 832 is located in the center and Site 833 is on the eastern edge of the North Aoba Basin, in the central part of the New Hebrides Island Arc. This basin is bounded on the east (Espiritu Santo and Malakula islands) and west (Pentecost and Maewo islands) by uplifted volcano-sedimentary ridges associated with collision of the d'Entrecasteaux Zone west of the arc. The currently active Central Belt volcanic front extends through the center of this basin and includes the shield volcanoes of Aoba, Ambrym, and Santa Maria islands. The oldest rocks recovered by drilling are the lithostratigraphic Unit VII Middle Miocene volcanic breccias in Hole 832B. Lava clasts are basaltic to andesitic, and the dominant phenocryst assemblage is plagioclase + augite + orthopyroxene + olivine. These clasts characteristically contain orthopyroxene, and show a low to medium K calc-alkaline differentiation trend. They are tentatively correlated with poorly documented Miocene calc-alkaline lavas and intrusives on adjacent Espiritu Santo Island, although this correlation demands that the measured K-Ar of 5.66 Ma for one clast is too young, due to alteration and Ar loss. Lava clasts in the Hole 832B Pliocene-Pleistocene sequence are mainly ankaramite or augite-rich basalt and basaltic andesite; two of the most evolved andesites have hornblende phenocrysts. These lavas vary from medium- to high-K compositions and are derived from a spectrum of parental magmas for which their LILE and HFSE contents show a broad inverse correlation with SiO2 contents. We hypothesize that this spectrum results from partial melting of an essentially similar mantle source, with the low-SiO2 high HFSE melts derived by lower degrees of partial melting probably at higher pressures than the high SiO2, low HFSE magmas. This same spectrum of compositions occurs on the adjacent Central Chain volcanoes of Aoba and Santa Maria, although the relatively high-HFSE series is known only from Aoba. Late Pliocene to Pleistocene lava breccias in Hole 833B contain volcanic clasts including ankaramite and augite + olivine + plagioclase-phyric basalt and rare hornblende andesite. These clasts are low-K compositions with flat REE patterns and have geochemical affinities quite different from those recovered from the central part of the basin (Hole 832B). Compositionally very similar lavas occur on Merelava volcano, 80 km north of Site 833, which sits on the edge of the juvenile Northern (Jean Charcot) Trough backarc basin that has been rifting the northern part of the New Hebrides Island Arc since 2-3 Ma. The basal sedimentary rocks in Hole 833B are intruded by a series of Middle Pliocene plagioclase + augite +/- olivine-phyric sills with characteristically high-K evolved basalt to andesite compositions, transitional to shoshonite. These are compositionally correlated with, though ~3 m.y. older than, the high-HFSE series described from Aoba. The calc-alkaline clasts in Unit VII of Hole 832B, correlated with similar lavas of Espiritu Santo Island further west, presumably were erupted before subduction polarity reversal perhaps 6-10 Ma. All other samples are younger than subduction reversal and were generated above the currently subduction slab. The preponderance in the North Aoba Basin and adjacent Central Chain islands of relatively high-K basaltic samples, some with transitional alkaline compositions, may reflect a response to collision of the d'Entrecasteaux Zone with the arc some 2-4 Ma. This may have modified the thermal structure of the subduction zone, driving magma generation processes to deeper levels than are present normally along the reminder of the New Hebrides Island Arc.
Resumo:
Sedimentary sections recovered from the Tonga platform and forearc during Ocean Drilling Program Leg 135 provide a record of the sedimentary evolution of the active margin of the Indo-Australian Plate from late Eocene time to the Present. Facies analyses of the sediments, coupled with interpretations of downhole Formation MicroScanner logs, allow the complete sedimentary and subsidence history of each site to be reconstructed. After taking into account the water depths in which the sediments were deposited and their subsequent compaction, the forearc region of the Tofua Arc (Site 841) can be seen to have experienced an initial period of tectonic subsidence dating from 35.5 Ma. Subsidence has probably been gradual since that time, with possible phases of accelerated subsidence, starting at 16.2 and 10.0 Ma. The Tonga Platform (Site 840) records only the last 7.0 Ma of arc evolution. However, the increased accuracy of paleowater depth determinations possible with shallow-water platform sediments allows the resolution of a distinct increase in subsidence rates at 5.30 Ma. Thus, sedimentology and subsidence analyses show the existence of at least two, and possibly four, separate subsidence events in the forearc region. Subsidence dating from 35.5 Ma is linked to rifting of the South Fiji Basin. Any subsidence dating from 16.2 Ma at Site 841 does not correlate with another known tectonic event and is perhaps linked to localized extensional faulting related to slab roll back during steady-state subduction. Subsidence from 10.0 Ma coincides with the breakup of the early Tertiary Vitiaz Arc because of the subduction polarity reversal in the New Hebrides and the subsequent readjustment of the plate boundary geometry. More recently, rapid subsidence and deposition of a upward-fining cycle from 5.30 Ma to the Present at Site 840 is thought to relate to rifting of the Lau Basin. Sedimentation is principally controlled by tectonic activity, with variations in eustatic sea level playing a significant, but subordinate role. Subduction of the Louisville Seamount Chain seems to have disrupted the forearc region locally, although it had only a modest effect on the subsidence history and sedimentation of the Tonga Platform as a whole.
Resumo:
We provide the first exploration of thallium (Tl) abundances and stable isotope compositions as potential tracers during arc lava genesis. We present a case study of lavas from the Central Island Province (CIP) of the Mariana arc, supplemented by representative sedimentary and altered oceanic crust (AOC) inputs from ODP Leg 129 Hole 801 outboard of the Mariana trench. Given the large Tl concentration contrast between the mantle and subduction inputs coupled with previously published distinctive Tl isotope signatures of sediment and AOC, the Tl isotope system has great potential to distinguish different inputs to arc lavas. Furthermore, CIP lavas have well-established inter island variability, providing excellent context for the examination of Tl as a new stable isotope tracer. In contrast to previous work (Nielsen et al., 2006b), we do not observe Tl enrichment or light epsilon 205Tl (where epsilon 205Tl is the deviation in parts per 10,000 of a sample 205Tl/203Tl ratio compared to NIST SRM 997 Tl standard) in the Jurassic-aged altered mafic ocean crust subducting outboard of the Marianas (epsilon 205Tl = - 4.4 to 0). The lack of a distinctive epsilon 205Tl signature may be related to secular changes in ocean chemistry. Sediments representative of the major lithologies from ODP Hole Leg 129 801 have 1-2 orders of magnitude of Tl enrichment compared to the CIP lavas, but do not record heavy signatures (epsilon 205Tl = - 3.0 to + 0.4), as previously found in similar sediment types (epsilon 205Tl > + 2.5; Rehkämper et al., 2004). We find a restricted range of epsilon 205Tl = - 1.8 to - 0.4 in CIP lavas, which overlaps with MORB. One lava from Guguan falls outside this range with epsilon 205Tl = + 1.2. Coupled Cs, Tl and Pb systematics of Guguan lavas suggests that this heavy Tl isotope composition may be due to preferential degassing of isotopically light Tl. In general, the low Tl concentrations and limited isotopic range in the CIP lavas is likely due to the unexpectedly narrow range of epsilon 205Tl found in Mariana subduction inputs, coupled with volcaniclastic, rather than pelagic sediment as the dominant source of Tl. Much work remains to better understand the controls on Tl processing through a subduction zone. For example, Tl could be retained in residual phengite, offering the potential exploration of Cs/Tl ratios as a slab thermometer. However, data for Tl partitioning in phengite (and other micas) is required before developing this application further. Establishing a database of Tl concentrations and stable isotopes in subduction zone lavas with different thermal parameters and sedimentary inputs is required for the future use of Tl as a subduction zone tracer.
Resumo:
During GANOVEX VI new gravity data were collected along an east-west profile in North Victoria Land south of the Drygalski Ice Tongue, extending 150 km across the Transantarctic Mountains, and comprising 21 data points. Thirty five additional data points were collected over a small area near Brimstone Peak, near the western end of the regional profile. The survey south of the Drygalski has been connected to northern gravity data (GANOVEX V) by a survey line of 12 points. All data have been terrain corrected, and are further constrained by satellite elevation (GPS) and radar ice-thickness measurements. A pronounced regional Bouguer gravity gradient decreasing to the west by approximately 3 mgal/km is superimposed over a coast-parallel belt of granitoid basement rock. West of this belt the local gravity fields become mote variable. Over Beta Peak (Ferrar dolerite) a 50 mgal spike is obser- ved. Within this area, the Ferrar sills are exposed at the surface. West of Brimstone Peak (Ferrar/Kirk patrick sequences), a smooth regional gradient appears to reassert itself. We interpret the initial gradient east (oceanward) of the break-in-slope to be representative of the crust/mantle boundary within the study area. We interpret the initial break-in-slope and the apparent flattening of the regional gradient to be an effect of the N-S trending zone of dense Ferrar sills and associated deep crusttil fractionate replacing less dense basement. We attribute the variability of the local field to be the product of sub-glacial density contrasts that cannot be removed. The regional gravity gradient of the profile is steeper than that observed to the north (Mt. Melbourne quadrangle) and shallower than that reported to the south (McMurdo Sound). The absolute values of the coastal points of origin south of the Drygalski and within the Mt. Melbourne quadrangle differ by 60 to 100 mgal. In addition, topographic relief within the regional transect area is subdued relative to the Transantarctic Mountains to the north and south. We speculate that the root structure of the Transantarctic Mountains undergoes a change somewhere between the Mt. Melbourne quadrangle and the region south of the Drygalski Ice Tongue.
Resumo:
We investigate aragonitic skeletons of the Caribbean sclerosponge Ceratoporella nicholsoni from Jamaica, 20 m below sea level (mbsl), and Pedro Bank, 125 mbsl. We use d18O and Sr/Ca ratios as temperature proxies to reconstruct the Caribbean mixed layer and thermocline temperature history since 1400 A.D. with a decadal time resolution. Our age models are based on U/Th dating and locating of the radiocarbon bomb spike. The modern temperature difference between the two sites is used to tentatively calibrate the C. nicholsoni Sr/Ca thermometer. The resulting calibration points to a temperature sensitivity of Sr/Ca in C. nicholsoni aragonite of about -0.1 mmol/mol/K. Our Sr/Ca records reveal a pronounced warming from the early 19th to the late 20th century, both at 20 and 125 mbsl. Two temperature minima in the shallow water record during the late 17th and early 19th century correspond to the Maunder and Dalton sunspot minima, respectively. Another major cooling occurred in the late 16th century and is not correlatable with a sunspot minimum. The temperature contrast between the two sites decreased from the 14th century to a minimum in the late 17th century and subsequently increased to modern values in the early 19th century. This is interpreted as a long-term deepening and subsequent shoaling of the Caribbean thermocline. The major trends of the Sr/Ca records are reproduced in both specimens but hardly reflected in the d18O records.
Resumo:
The backarc glasses recovered during Ocean Drilling Program Leg 135 are unique among submarine tholeiitic glasses with respect to their oxygen fugacity and sulfur concentrations. Unlike mid-ocean-ridge basalt glasses, fO2 in these samples (inferred from ratios Fe3+/Fe2+) is high and variable, and S variations (90-1140 ppm) are not coupled with FeO concentration. Strong correlations occur between the alkali and alkaline-earth elements and both fO2 (positive correlations) and S concentrations (negative correlations). Correlations between fO2 and various trace elements are strongest for those elements with a known affinity for hydrous fluids (perhaps produced during slab dehydration), suggesting the presence of a hydrous fluid with high fO2 and high alkali and alkaline earth element concentrations in the Lau Basin mantle. Concentrations of S and fO2 are strongly correlated; high fO2 samples are characterized by low S in addition to high alkali and alkaline earth element concentrations. The negative correlations between S and these trace elements are not consistent with incompatible behavior of S during crystallization. Mass balance considerations indicate that the S concentrations cannot result simply from mixing between low-S and high-S sources. Furthermore, there is no relationship between S and other trace elements or isotope ratios that might indicate that the S variations reflect mixing processes. The S variations more likely reflect the fact that when silicate coexists with an S-rich vapor phase the solubility of S in the silicate melt is a function of fO2 and is at a minimum at the fO2 conditions recorded by these glasses. The absence of Fe-sulfides and the high and variable vesicle contents are consistent with the idea that S concentrations reflect silicate-vapor equilibria rather than silicate-sulfide equilibria (as in MORB). The low S contents of some samples, therefore, reflect the high fO2 of the supra-subduction zone environment rather than a low-S source component.
Resumo:
Despite their high abundance and their high importance for the oceanic matter flux, heterotrophic nanoflagellates are only poorly studied in the deep-sea regions. Studies on the choanoflagellate distribution during two deep-sea expeditions, to the South Atlantic (5038 m) and Antarctica (Weddell Sea, 2551 m), revealed the deepest records of choanoflagellates so far. A new species, (Lagenoeca antarctica) with a conspicuous spike structure on the theca is described from deep Antarctic waters. Lagenoeca antarctica sp. n. is a solitary unstalked free living salpingoecid-like choanoflagellate. The protoplast is surrounded by a typical theca with unique spikes only visible in SEM micrographs. The ovoid cell nearly fills the whole theca and ranges in size from 4 to 6 µm. The collar measures 2-3 µm and the flagellum 3-5 µm. A second species, Salpingoeca abyssalis sp. n., was isolated from the abyssal plain of the South Atlantic (5038 m depth). Floating and attached forms were observed. The protoplast ranges from to 2 to 4 µm in length and 1 to 2 µm in width. The collar is about the same length as the protoplast and the flagellum has 2 to 2.5 × the length of the protoplast. Phylogenetic analyses based on a fragment of SSU rDNA revealed Salpingoeca abyssalis to cluster together with a marine isolate of Salpingoeca infusionum while Lagenoeca antarctica clusters separately from the other codonosigid and salpingoecid taxa. Salpingoeca abyssalis and an undetermined Monosiga species seems to be the first choanoflagellate species recorded from the abyssal plain.
Calcium carbonate and organic carbon content, and stable isotope composition of sediment core V19-27