42 resultados para spatial and temporal patterns


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Planktic stable isotopes by Mix for this paper and Pisias and Mix (1997)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on a well-established stratigraphic framework and 47 AMS-14C dated sediment cores, the distribution of facies types on the NW Iberian margin is analysed in response to the last deglacial sea-level rise, thus providing a case study on the sedimentary evolution of a high-energy, low-accumulation shelf system. Altogether, four main types of sedimentary facies are defined. (1) A gravel-dominated facies occurs mostly as time-transgressive ravinement beds, which initially developed as shoreface and storm deposits in shallow waters on the outer shelf during the last sea-level lowstand; (2) A widespread, time-transgressive mixed siliceous/biogenic-carbonaceous sand facies indicates areas of moderate hydrodynamic regimes, high contribution of reworked shelf material, and fluvial supply to the shelf; (3) A glaucony-containing sand facies in a stationary position on the outer shelf formed mostly during the last-glacial sea-level rise by reworking of older deposits as well as authigenic mineral formation; and (4) A mud facies is mostly restricted to confined Holocene fine-grained depocentres, which are located in mid-shelf position. The observed spatial and temporal distribution of these facies types on the high-energy, low-accumulation NW Iberian shelf was essentially controlled by the local interplay of sediment supply, shelf morphology, and strength of the hydrodynamic system. These patterns are in contrast to high-accumulation systems where extensive sediment supply is the dominant factor on the facies distribution. This study emphasises the importance of large-scale erosion and material recycling on the sedimentary buildup during the deglacial drowning of the shelf. The presence of a homogenous and up to 15-m thick transgressive cover above a lag horizon contradicts the common assumption of sparse and laterally confined sediment accumulation on high-energy shelf systems during deglacial sea-level rise. In contrast to this extensive sand cover, laterally very confined and maximal 4-m thin mud depocentres developed during the Holocene sea-level highstand. This restricted formation of fine-grained depocentres was related to the combination of: (1) frequently occurring high-energy hydrodynamic conditions; (2) low overall terrigenous input by the adjacent rivers; and (3) the large distance of the Galicia Mud Belt to its main sediment supplier.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A transect from the bathyal to proximal shelf facies of the Boreal Realm was investigated to compare spatial and temporal distribution changes of calcareous dinoflagellate cysts (c-dinocysts) throughout the mid-Cenomanian in order to gain information on the ecology of these organisms. Pithonelloideae dominated the cyst assemblages to more than 95% on the shelf, a prevalence that can be observed throughout most of the Upper Cretaceous. The affinity of this group with the dinoflagellates, which is still controversially discussed, can be confirmed, based on evidence from morphological features and distribution patterns. The consistent prevalence of Pithonella sphaerica and P. ovalis in c-dinocyst assemblages throughout the Upper Cretaceous indicates that they were produced more frequently than cysts of the other species and might, therefore, represent a vegetative dinoflagellate life stage. P. sphaerica and P. ovalis are interpreted as eutrophic species. P. sphaerica is the main species in a marginal-shelf upwelling area, offshore Fennoscandia. Here, sedimentary cyclicity appears to have been reduced to the strongest light/dark changes, while in the outer shelf sediments, light/dark cycles are well-developed and show pronounced temporal assemblage changes. Cyclic fluctuations in the P. sphaerica / P. ovalis ratio reflect shifts of the preferred facies zones and indicate changes in surface mixing patterns. During periods of enhanced surface mixing most parts of the shelf were well-ventilated, and nutrient-enriched surface waters led to high productivity and dominance of the Pithonelloideae. These conditions on the shelf contrasted with those in the open ocean, where more oligotrophic and probably stratified waters prevailed, and an assemblage with very few Pithonelloideae and dominance of Cubodinellum renei and Orthopithonella ? gustafsonii was characteristic. While orbitally-forced light/dark sedimentary cyclicity of the shelf sections was mainly related to surface-water carbonate productivity changes, no cyclic modulation of productivity was observed in the oceanic profile. Therefore, dark layer formation in the open ocean was predominantly controlled by the cyclic establishment of anoxic bottom water conditions. Orbitally-forced interruptions in mixing on the shelf resulted in cyclic periods of stratification and oligotrophy in the surface waters, an expansion of oceanic species to the outer shelf, and a shelfward shift of pithonelloid-facies zones, which were probably related to shelfward directed oceanic ingressions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Standing stocks and production rates for phytoplankton and heterotrophic bacteria were examined during four expeditions in the western Arctic Ocean (Chukchi Sea and Canada Basin) in the spring and summer of 2002 and 2004. Rates of primary production (PP) and bacterial production (BP) were higher in the summer than in spring and in shelf waters than in the basin. Most surprisingly, PP was 3-fold higher in 2004 than in 2002; ice-corrected rates were 1581 and 458 mg C/m**2/d respectively, for the entire region. The difference between years was mainly due to low ice coverage in the summer of 2004. The spatial and temporal variation in PP led to comparable variation in BP. Although temperature explained as much variability in BP as did PP or phytoplankton biomass, there was no relationship between temperature and bacterial growth rates above about 0°C. The average ratio of BP to PP was 0.06 and 0.79 when ice-corrected PP rates were greater than and less than 100 mg C/m**2/d, respectively; the overall average was 0.34. Bacteria accounted for a highly variable fraction of total respiration, from 3% to over 60% with a mean of 25%. Likewise, the fraction of PP consumed by bacterial respiration, when calculated from growth efficiency (average of 6.9%) and BP estimates, varied greatly over time and space (7% to >500%). The apparent uncoupling between respiration and PP has several implications for carbon export and storage in the western Arctic Ocean.